I came up with this idea when solving an AtCoder problem, but the editorial had a simpler solution. I liked the idea, so I decided to set a CodeChef problem using this idea. Since most of you guys don't participate in CodeChef contests, which is a big mistake, I'll write a short blog explaining the idea. Consider this a spoiler warning for these two problems and a CodeChef promotion.
Combinatorial problem
For given $$$a$$$ and $$$n \le 10^5$$$ calculate $$$A_k = \sum_{i=0}^{k} \binom{k}{i} \binom{n-k}{k-i} a^{i}$$$ for each $$$k$$$ from $$$0$$$ to $$$n$$$.
(Use the two links above to see why anybody would like to do that)
Reformulation with polynomials
It is easy to see that $$$A_k$$$ is $$$((1+ax)^{k}(1+x)^{n-k})[x^k]$$$ (coefficient of $$$x^k$$$ in polynomial $$$(1+ax)^{k}(1+x)^{n-k}$$$). But since the polynomials are different for different $$$k$$$ this doesn't seem very helpful...
Solution
Let's generalize this a bit and say that $$$P$$$ and $$$Q$$$ are polynomials of degree at most $$$d$$$ and we want to calculate $$$P^k Q^{n-k} [x^k]$$$ for all $$$k$$$ ($$$d = 1$$$ in the problem above).
Let's apply divide-and-conquer. Let's say we want to solve the problem for $$$k \in [l, r]$$$. Then all the interesting polynomials will be divisible by $$$P^l Q^{n-r}$$$. Let's say we somehow calculated this polynomial. For given $$$k$$$ we will then have to multiply it by $$$P^{k-l} Q^{r-k}$$$. But the degree of this polynomial is $$$d(r-l)$$$, and since in the end we will be looking only at coefficients from segment $$$[l, r]$$$, right now we only care about the coefficients from segment $$$[l - d(r-l), r]$$$, all the other coefficients can't affect the answer. So, the number of coefficients we are interested in is $$$O(d(r-l))$$$. Let's write a recursive function that will take $$$l$$$, $$$r$$$ and a segment of interesting coefficients of $$$P^l Q^{n-r}$$$ and will find all the answers for $$$k \in [l, r]$$$. We'll choose $$$m = \frac{l+r}{2}$$$ and recurse to $$$[l, m]$$$ and $$$[m + 1, r]$$$. To recurse to the left, for example, we'll need to multiply $$$P^l Q^{n-r}$$$ by $$$Q^{r-m}$$$ and take a segment of coefficients. Since both polynomials have degree $$$O(d(r-l))$$$, we can multiply them in $$$O(d(r-l) \log (d(r-l)))$$$ time. To get $$$Q^{r-m}$$$ one can use binary exponentiation, it will work in $$$O(d(r-m) \log (d(r-m)))$$$ time (if $$$d=1$$$, one can use binomial theorem instead). The total complexity will be $$$O(nd \log^{2} n)$$$.
Why cannot codechef provide editorial for all task , there are good task and then i have to read solution of top people and decode what they did. Example Last cook off. Why cannot editorial be published for all task as codeforces does, i don't need spoon feeding but atleast some rough sketch of solution must be there. Editorial that might have been used while setting the problem, atleast provide that.
I did a div 4 when Anton problemsetted and tbh the last two problems were good
I was quite surprised by how good codechef is compared to how it is usually described
Agree, last few problems are really nice and educational in most of the codechef contests
Since the blog title is "D&C with FFT", I will put this problem link here.
https://mirror.codeforces.com/contest/1641/problem/E
Since most of you guys don't participate in CodeChef contests, which is a big mistake
, Well said!