Блог пользователя Atomic-Jellyfish

Автор Atomic-Jellyfish, 14 месяцев назад, По-английски

1875A - Jellyfish and Undertale

Tutorial
Code

1874A - Jellyfish and Game

Tutorial
Code

1875C - Jellyfish and Green Apple

Tutorial
Code

1875D - Jellyfish and Mex

Tutorial
Code

1874B - Jellyfish and Math

Tutorial
Code

1874C - Jellyfish and EVA

Tutorial
Code

1874D - Jellyfish and Miku

Tutorial
Code

1874E - Jellyfish and Hack

Tutorial
Code

1874F - Jellyfish and OEIS

Tutorial
Code

1874G - Jellyfish and Inscryption

Tutorial
Code
Разбор задач Codeforces Round 901 (Div. 1)
Разбор задач Codeforces Round 901 (Div. 2)
  • Проголосовать: нравится
  • +220
  • Проголосовать: не нравится

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится +389 Проголосовать: не нравится

I apologize for the unreasonable difficulty. I'm sorry :(

UPD: https://mirror.codeforces.com/blog/entry/120967

»
14 месяцев назад, # |
  Проголосовать: нравится +4 Проголосовать: не нравится

At some point I have just started guessing C and it worked 226022161 (only if I didn't forget to take n modulo m first)

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    pls explain me why in Problem C my solution passed for only 60 iterations but otherwise it showed tle

  • »
    »
    6 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Can you explain why u have taken max 300 operations

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Why my O(n^2) solution fails 226039678? Thanks in advance

»
14 месяцев назад, # |
Rev. 3   Проголосовать: нравится +42 Проголосовать: не нравится

I think you can solve Div1.D in $$$O(nm)$$$: https://mirror.codeforces.com/contest/1874/submission/225975684

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

tilted asf, how to become better on coming up with ideas for DP, ABC superfast and ... no way, i wasted 2.5 h on D and didnt solve it, but came up with O(n^3) solution first, then O(n^2*logn), tl..

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

I have one doubt . in Div2C how do we know, that for the given set of powers it is always possible to divide the apples , in a away that all m people will get that set of powers?

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Each person needs $$$\frac{n}{m}$$$ apples. We can divide each of the $$$n$$$ apples into $$$m$$$ pieces, then each piece is $$$\frac{1}{m}$$$, Each person takes $$$n$$$ pieces.

    This is only possible since $$$m$$$ is a power of two, otherwise we would not be able to divide an apple into $$$m$$$ pieces.

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Thanks

    • »
      »
      »
      14 месяцев назад, # ^ |
      Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

      thats almost right...consider n = 3 and m = 24 here m is not a power of two but its still possible....thats why actually m/gcd(m,n) should be a power of two ;)

      • »
        »
        »
        »
        14 месяцев назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Yes what I did was take gcd, divide it from m and n at the beginning, then multiply back at the end

        • »
          »
          »
          »
          »
          14 месяцев назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          In Div2C, Why the answer in the tutorial is m×|S|−n. Anyone help me pls, I was thinking from yesterday.

          • »
            »
            »
            »
            »
            »
            14 месяцев назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится

            Everyone should have $$$|s|$$$ pieces( $$$\frac n m = \sum_{i \in S} \frac 1 {2^i}$$$ ), there are $$$m$$$ people and $$$n$$$ pieces (each one is a whole apple), and the number of apple pieces is added to exactly $$$1$$$ for each cut.

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

I can't understand this statement:

Since it's cut in half every time, if $$$\frac m{\gcd(n,m)}$$$ is not an integral power of $$$2$$$, there's no solution.

I just made 2000 iterations simulating the process:

int op=0;
while (n && op < 2000) {
    op++;
    cnt += n;
    n *= 2;
    n %= m;
}
if(n) 
    cout<<-1<<endl;
else
    cout << cnt << endl;
  • »
    »
    14 месяцев назад, # ^ |
    Rev. 3   Проголосовать: нравится +4 Проголосовать: не нравится

    suppose after some large no (let it be a) of iterations, let x be (n*2^a) then -> x%m (according to your code only)

    now, x%m to be zero m should be the divisor of x.

    now m can be in the form of something * 2^(something else).

    now this something cannot come from 2^a so it should come from n (see x=n*2^a) therefore m/(__gcd(n, m)) should not have any other prime factors other than two because 2 (in other words __gcd(n,m) should take all factors from m which are not 2) can be taken care by 2^a, but remaining factors have to be taken care by n itself.

    explanation might be bad english not my native language.

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится +3 Проголосовать: не нравится

      Thank you I got it.

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Help me understand this in a better way, please.

      • »
        »
        »
        »
        14 месяцев назад, # ^ |
        Rev. 3   Проголосовать: нравится +2 Проголосовать: не нравится

        If you can give everyone the same piece then (n * 2^k = 0) mod m, or n * 2^k = q * m. You can factor out gcd(n, m) to get

        a * 2^k = q * b, where a = n / gcd(n, m) and b = m / gcd(n, m).

        Now if b is a power of 2, then q = a and 2^k = b satisfies the equation. But if b is not a power of 2, then b has some additional factor(s) that is not found in a (because a is coprime to b) and 2^k (since b is not a power of 2).

        Also https://youtu.be/UvnVghpIjwk?si=rmsoD_dtVNUFOtLx&t=668

        • »
          »
          »
          »
          »
          14 месяцев назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          For 1875C — Jellyfish and Green Apple can you please explain: why __builtin_popcount(a) is equal to |S|?

          • »
            »
            »
            »
            »
            »
            10 месяцев назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится

            Because m is 2 's interger power, (a/m) is equal to |S|,and so do(a);

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    THANK YOU !!

»
14 месяцев назад, # |
Rev. 3   Проголосовать: нравится +16 Проголосовать: не нравится

In problem $$$D$$$, ternary search for finding the optimal $$$x$$$ works for some reason.

In problem $$$E$$$, $$$FFT$$$ does pass without any D&C, just by computing the convolution of $$$dp[i-1]$$$ and $$$dp[n-i]$$$ for every $$$i$$$ (used the fastest 1000 lines long implementation from yosupo judge).

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

"Note that the sum of n over all test cases is not bounded." what does this mean in Div2 A problem?

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится +10 Проголосовать: не нравится

    Usually the sum of $$$n$$$ over all test cases is such that an $$$O(n)$$$ solution would remain $$$O(n)$$$ (not $$$O(nt)$$$) even though you're answering $$$t$$$ test cases. However if $$$n$$$ is unbound, this doesn't stay true.

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

why does my div2 D python code TLE (link)

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится +83 Проголосовать: не нравится

Div2D problem can be solved in $$$O(n)$$$ time and memory.

Let's say that mex values we add to the total score are interesting values. So main the observation is that there are $$$O(\sqrt{n})$$$ that can be interesting values. Proof: Define $$$cnt(x)$$$ as the count of $$$x$$$ in the array. Suppose that $$$x < y$$$, and $$$cnt(x) = cnt(y)$$$. We will not select both of them as interesting because it's enough to choose one. So if we choose $$$y$$$ its contribution to the answer is $$$y * cnt(y)$$$ and if we choose $$$x$$$ the contribution is $$$x * cnt(x)$$$, and as $$$cnt(x) = cnt(y)$$$ it's optimal to choose $$$x$$$. For every $$$cnt(i) = x$$$, it's enough to choose minimal $$$i$$$ as interesting value and as $$$1 + 2 + 3 + ... 2 \sqrt{n} \ge n$$$ there are at most $$$2 \sqrt{n}$$$ interesting values.

We can do DP as in editorial but only with values that can be interesting. Total complexity is $$$O(\sqrt{n}^2) = O(n)$$$.

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    i did not understand it clearly could you explain with this example??

    0 0 0 0 0 1 1 1 1 2 2 2 3 3 4

    • »
      »
      »
      14 месяцев назад, # ^ |
      Rev. 2   Проголосовать: нравится +3 Проголосовать: не нравится

      For this example, $$$n = 15$$$. Also $$$cnt(4) = 1$$$, $$$cnt(3) = 2$$$, $$$cnt(2) = 3$$$, $$$cnt(1) = 4$$$ and $$$cnt(0) = 5$$$. So 0, 1, 2, 3, and 4 (5 numbers) can be interesting values. And $$$5 \leq 2 \sqrt{15} \approx 8 $$$. We do DP only for these numbers.

      Let's see another example. $$$n = 20$$$ 0 1 2 2 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7. For this example only numbers 0, 2, 4, 6 (4 numbers) can be interesting. $$$4 \leq 2 \sqrt{20} \approx 9 $$$.

      And for any array count of possible interesting numbers won't exceed $$$2 \sqrt{n}$$$.

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится +16 Проголосовать: не нравится

    It is a really nice idea and it is sad that it's not possible to make this problem use it because convex hull trick will pass anyway.

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    why is the contribution y* cnt(y) shouldn't it be mex * cnt(y)

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Actually complexity is $$$O(log(n)n)$$$ or $$$O(\sqrt n n)$$$. Because you need too count numbers.

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

There is also o(1) approach for problem b https://mirror.codeforces.com/contest/1875/submission/226021601

»
14 месяцев назад, # |
  Проголосовать: нравится +10 Проголосовать: не нравится

Div2 D works with convex hull trick!

»
14 месяцев назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

how the equation m×|S|−n come out in the problem Div2C? Can anyone explain this? There is no any additional comments about this in Editorial.

  • »
    »
    14 месяцев назад, # ^ |
    Rev. 4   Проголосовать: нравится +4 Проголосовать: не нравится

    |S| is the number of pieces of apple each person is going to get , so m*|S| will be the total number of pieces they are going to get. Since each cut increase the number of pieces by 1 and initially there are n pieces when there are 0 cuts hence for x pieces we have to make x-n cuts and hence number of cuts will be m*|S| — n.

  • »
    »
    11 месяцев назад, # ^ |
    Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

    I was also stuck in how builtin_popcount_ ( or the number of set bits in a) is equal to the value of m. I got it like this:

    If each person gets a/b (simplest form of n/m) weight of apple: It is represented as 1/2^k + 1/2^l + .... and sum of all these individual parts for a person is equal to a/b. a will be the numerator . Also, we notice that on adding these we will get just some powers of 2 in numerator . and lets say 2^p + 2^q +.... =a So number of pieces for each person can be obtained as number of different powers of 2 that add up to form the numerator . ie (a), and this is just equal to the number of set bits in 'a'. Also, in one cut we get 1 extra pieces , so for m*|S| pieces , we need to make m*|s| -n cuts, as we already had n pieces when 0 cuts were made (as explained by the person above)

»
14 месяцев назад, # |
  Проголосовать: нравится +29 Проголосовать: не нравится

For Div1C, can someone please explain why $$$p_i$$$ is different for each $$$v_i$$$, I don't get it, it should be same according to me.

  • »
    »
    14 месяцев назад, # ^ |
    Rev. 2   Проголосовать: нравится +24 Проголосовать: не нравится

    It depends on what is $$$p_i$$$?
    $$$p_i$$$ is probability that both of them chose $$$i$$$, possibility after destroying some roads.
    Let's say graph has 4 outgoing edges from 1, aka $$$1->2$$$,$$$1->3$$$,$$$1->4$$$,$$$1->5$$$,
    Let $$$f_2=0.4$$$, $$$f_3=0.2$$$, $$$f_4=0.1$$$, $$$f_5=0.5$$$.

    During the first turn, Asuka will choose all nodes with equal probability, so for maximum probability to reach n, Jellyfish should choose $$$5$$$, there $$$p_5=0.25$$$.

    The second turn happens only if Asuka does not choose $$$5$$$ in the first turn.
    If $$$2$$$ still exists for the second turn, Jellyfish should choose it. $$$p_2=0.5*0.5$$$, (Asuka chose 3/4 in the first turn and 2 in the second turn).
    If $$$2$$$ does not exist, then Jellyfish should choose $$$3$$$, $$$p_3=0.25*0.5$$$. (Asuka chose 2 in the first turn, and then 3 in the second turn)

    Jellyfish will not get a third turn; he will never choose $$$4$$$, $$$p_4=0$$$,

    $$$f_1= p_2*f_2+ p_3*f_3+p_4*f_4+p_5*f_5$$$
    $$$f_1= 0.25*0.4+ 0.625*0.2+0*0.1+0.25*0.5$$$

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Can you explain why f[i] = $$$\sum$$$ f[j]*p[j] ?

      • »
        »
        »
        »
        14 месяцев назад, # ^ |
          Проголосовать: нравится +19 Проголосовать: не нравится

        It's via linearity of expectation/probability.

        If one is at $$$i$$$, the next possible outcome is one move to one of the nodes ($$$j$$$) with an edge and eventually moves to $$$n$$$, or one remains stuck there.

        So, the probability of reaching $$$n$$$ from $$$i$$$ will be the probability of moving from $$$i$$$ to one of the adjacent nodes multiplied by their probability to reach $$$n$$$, and $$$0$$$ (probability to reach $$$n$$$ after being struck on node $$$u$$$) multiplied by probability to remain stuck there.

        Sure enough, you can also add other non-adjacent nodes in this equation but the probability of reaching them from $$$i$$$ is $$$0$$$.

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      By calculating, p=[0.25,0.25,0.125,0] , it also satisfies the condition.

      how can we be sure it satisfies the condition without checking all cases??

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Thanks, I misunderstood the problem twice, but your explanation made it very clear why the $$$p_i$$$'s would be different. But, the only issue is to calculate these $$$p_i$$$'s in general, how did you extended this approach for any general $$$d$$$ outgoing edges?

      • »
        »
        »
        »
        14 месяцев назад, # ^ |
        Rev. 3   Проголосовать: нравится +21 Проголосовать: не нравится

        Asuka chooses randomly with equal probability; by exchanging arguments, one can conclude that Jellyfish should always choose the one with the highest $$$f_j$$$, still around.

        Sort all the possible nodes in the adjacency list in descending order; then, we want to find $$$p_j$$$ of each of them, with the condition that Jellyfish will always choose the first available one.

        We can define the following $$$dp[L][R]$$$ as the probability of selecting $$$L+1$$$ th person in a sequence of $$$L+1+R$$$ people.

        DP transitions
        • »
          »
          »
          »
          »
          14 месяцев назад, # ^ |
            Проголосовать: нравится +16 Проголосовать: не нравится

          Probably the editorial was written on the same idea, but I was not able to understand it until you dropped a much simpler explanation. Thanks!

        • »
          »
          »
          »
          »
          14 месяцев назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          thanks dude, your explanation is really clear and understandable. and maybe a typo error that in the case " chose one of the left ", the probability should be (L-1)/(L+1+R) instead of (L-2)/(L+1+R)

        • »
          »
          »
          »
          »
          5 месяцев назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          Sorry for necroposting but is there an easy way to prove that the probability of choosing the element we want is non-increasing? Or maybe I'm not understanding the proof by exchanging arguments (that obviously works in the first step since every edge has $$$1/d$$$ probability but I can't extend it for subsequent turns...).

          I don't understand why the strategy of always going for the highest $$$f_j$$$ still around works. Won't there be cases where it's better to wait for some edges to be deleted and then choose the highest $$$f_j$$$ among all of them? In that case, we should first go for some other edge with lesser $$$f_i$$$ and then, after some turns, go for the highest $$$f_j$$$, since it would have higher probability.

          The only way I can think of is proving that $$$dp[L][N-L-1] \geq dp[L+1][N-L-2]$$$ but the formulas blow up recursively.

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      How do you calculate p2? If Asuka chooses 3/4 in the first move, then this probability = 2/5 = 0.4, and from there, for Asuka to pick 2, it should be 1/3. So p2 should be (2/5)*(1/3) right?

      • »
        »
        »
        »
        14 месяцев назад, # ^ |
          Проголосовать: нравится +2 Проголосовать: не нравится

        There are only $$$4$$$ outgoing edges from $$$1$$$, so possible choices are $$$4 (2,3,4,5)$$$ instead of $$$5$$$. So, in the first move, Asuka has to select $$$3$$$ or $$$4$$$, which has $$$2/4$$$ probability.
        In the second move, the remaining edges will be $$$1->2$$$ and ($$$1->3$$$ or $$$1->4$$$); selecting $$$1->2$$$ will have probability $$$1/2$$$.

        Overall $$$2/4*1/2$$$

»
14 месяцев назад, # |
  Проголосовать: нравится +6 Проголосовать: не нравится

You can easily optimise the Div2 D solution to O(N) by noticing that you will ever only consider deleting O(sqrt(N)) distinct elements. As the author mentioned, the deletions will be of strictly descending value but they will also be of strictly ascending count of appearance. Of course the sum of the counts of the elements we erase is bounded by N and since the counts will be distinct as mentioned earlier, the number of elements we consider erasing is O(sqrt(N)) (this is because in the worst case the counts are 1, 2, 3, .. and the sum of this series is quadratic). Then we can just do the same DP with complexity O(sqrt(N)^2) = O(N).

»
14 месяцев назад, # |
  Проголосовать: нравится -8 Проголосовать: не нравится
»
14 месяцев назад, # |
  Проголосовать: нравится +4 Проголосовать: не нравится

For question C, turns out 1000 operations fits under the time limit and satisfies an "infinite" number of operations 226038405 :)

  • »
    »
    11 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    You can even go down to a number as small as 100, since 2^100 is way greater than 10^9! Great solution, I didn't even think about brute forcing.

»
14 месяцев назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

Number of Submissions(E)*Submissions(F)*Submissions(G)<Submissions(D)

»
14 месяцев назад, # |
Rev. 5   Проголосовать: нравится 0 Проголосовать: не нравится

finally got it thanks passwordisa

»
14 месяцев назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Please someone explain the mathematics behind the Div2C problem as mentioned in editorial in detail.

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Since it's cut in half every time, if m/gcd(n,m) is not an integral power of 2, there's no solution. (Div 2C) Can anyone explain this statement?

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится +1 Проголосовать: не нравится

    The denominator on each slice needs to be a power of two. For example, you couldn't make $$$\frac{1}{3}$$$ of an apple with slices of $$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\cdots$$$, thus if $$$n=1$$$ and $$$m=3$$$ you can immediately say it's not possible.

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

For Div1 C, you can also think of the solution as writing n/m in binary such that the mantissa is not recurring. Why? Because you will divide the apples in powers of 2 and sum them to get n/m, which is possible in finite steps only if the sequence terminates.

And how do we know that if the mantissa is recurring? Well, if you get remainder 0 at some step then it terminates. And if you get the same reminder again, then it doesn't. To avoid storing digits, you can just check if the number is longer than 32 bits, if not, then it is recurring since its modulo is bounded and it can't extend to a digit longer than that.

Submission for reference

»
14 месяцев назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

Can someone clarify the middle paragraph in Div1.B?

I don't understand why we need +1 in 4^8. Also are the nodes in the BFS functions?

thx in advance

»
14 месяцев назад, # |
  Проголосовать: нравится +37 Проголосовать: не нравится

I think tests for Div1C are not great because my solution runs in time sum of squares of degrees which is $$$O(n \cdot m)$$$ in the worst case, and I think it should be just about ok to pass the time limit. However, in reality my solution works in 75ms which is even faster than most of the other solutions that work in time $$$O(n^2 + m \log n)$$$.

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Can someone explain me why my solution is wrong for div2 question 1. 226083957

Thought process is that whenever the timer comes to 1 we add the array element, now we have 1+array element seconds left until bomb explodes ( obviously if 1+array element is greater than permissible value then I will just take the permissible value, formally min(arr[i]+1, a) )

now we just sum this up for each element and the answer will be

initial timer value + sum

b + sum should be answer isn't it?

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    You have int overflow, use long long instead

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Thanks, that does solve the problem. But one thing which I now started to have question is that why was I subtracting n from my answer.

      • »
        »
        »
        »
        14 месяцев назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        You do sum+=min(arr[i]+1,a); which actually adds one more second than the tool is supposed to, the correct statement would be sum+=min(arr[i],a-1);

        You then subtract by $$$n$$$ at the end to correct the error.

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится +26 Проголосовать: не нравится

This was the best contest I have ever faced in a while. I enjoyed the problems so much. Thank you Atomic-Jellyfish.

I solved Div. 1 D/Div. 2 G in $$$O(nm)$$$ using an observation I didn't try to prove.

First of all, I arrived at the formula that the answer is

$$$\displaystyle n + 2\sum_{i = 1}^{n - 1} \sum_{j = 0}^{i - 1} \frac{a_j}{a_i}$$$

and optimize the nested sum using DP.

I noted that the sum is simply

$$$\displaystyle \sum_{i = 1}^{n - 1} \frac{p_{i - 1}}{a_i}$$$

if $$$p_i = a_0 + a_1 + \dots + a_i$$$. I used a slightly different dp transition with states (current index, sum of weights so far) to obtain the following formula

$$$\displaystyle dp[i][S] = \min_{1 \le w_i \le m - S} dp[i + 1][S + w_i] + \frac{S}{w_i}$$$

which can therefore be altered to

$$$\displaystyle dp[i][S] = \min_{S \le k \le m} dp[i + 1][k] + \frac{S}{k - S}$$$

Now, the observation is as follows:

Observation

This is the observation stated formally. Now, what is this really trying to say is that we can treat each

$$$\displaystyle dp[i + 1][k] + \frac{S}{k - S}$$$

as a function in the form of

$$$\displaystyle g(c, k) = c + \frac{x}{k - x}$$$

with $$$c = dp[i + 1][k]$$$, and we plug in $$$x \mapsto S$$$. Now, we need a data structure to store the maintain the minimum of these functions at a given $$$S$$$.

Assume $$$dp[n][x] = 0$$$ for all $$$x$$$. We can calculate $$$dp[i][S]$$$ for each $$$i$$$ from $$$n - 1$$$ to $$$0$$$, and since the minimization is done over $$$S \le k \le m$$$, we may loop over $$$S$$$ from $$$m$$$ down to $$$0$$$ and we may insert the function $$$g(dp[i + 1][S], S)$$$ in the data structure for minimization.

So, we see that the data structure receives the functions in the form of $$$g(c, k)$$$ where $$$k$$$ keeps strictly decreasing. Now, to maintain what is the minimum function at $$$x = S$$$, we use the observation that we noted. We maintain a deque (or monotonic stack) containing pairs $$$(c, k)$$$ where $$$c_1 < c_2 < \dots$$$ and $$$k_1 < k_2 < \dots$$$.

When we receive a new $$$(c, k)$$$, it must be that $$$k < k_1$$$, and (1) and (2) in the observation tell us that if $$$c \ge c_1$$$, then we don't care since $$$g(c, k)$$$ will be minimal at every non-negative $$$x$$$. If $$$c < c_1$$$, we insert $$$(c, k)$$$ in the front of the deque, since (3) in the observation tells us that there is an intersection where $$$g(c, k)$$$ will become less than $$$g(c_1, k_1)$$$ and thus optimal.

Finally, we note from (4) that the intersections of the functions in our data structure are increasing, and between each two intersections one function overtakes the other function as being the optimal. So, we can note that while the current $$$S$$$ is greater than the intersection of the last two functions in the deque, we can just remove the last function. Then, we query at $$$x = S$$$ in the last function in the deque. This works in Amortized $$$O(nm)$$$.

Note: I calculated the intersections using equations from Wolfram Alpha.

Here is my submission.

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

In Div2 D, why do we need to subtract the initial MEX from dp[0]?

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    Think of it this way: [ a * ( cnt[b] - 1 ) + b ] + [ b * ( cnt [ c ] - 1 ) + c ] = a * cnt [ b ] + b * cnt[ c ] + c - a

    But since c must end up being 0, it becomes minus a, which is the original m

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can anybody explain me why my code in problem C was showing tle

Your code here...
int n = in.nextInt();
            int m = in.nextInt();
            HashSet<Long> a = new HashSet<>();
            if(n % m == 0){
                pw.println(0);
            }else if((m & 1) == 1){
                pw.println(-1);
            }
            else{
                long l = n % m;
                long ans = 0;
                while(l != m){
                    if(a.contains(l)){
                        ans = -1;
                        break;
                    }
                    a.add(l);
                    ans += l;
                    l *= 2;
                    if(l > m){
                        l %= m;
                    }
                }
                pw.println(ans);
            }

but when i iterate in while loop for less than 60 iteration it passes

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    The sequence takes O(n) steps before it terminates. In your code, you check the whole sequence which goes up to 1e9, and the number of test cases is 2e4, so overall you do around 2e13 operations which gives you TLE.

»
14 месяцев назад, # |
  Проголосовать: нравится +16 Проголосовать: не нравится

Can anyone prove that precision error wont blow up in D1C?

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Great contest...

»
14 месяцев назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

thx for the round, really cool div1B, I love it.

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится +8 Проголосовать: не нравится

    Can you please explain ? What are the nodes of Bfs? and how is the time complexity calculated? Thanks in advance

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Amazing Div1B !

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится -10 Проголосовать: не нравится

    I used bfs each time and it finally passed because I found there were only a few situations ($$$\leq 1000$$$). After reading the solution, I think it's a good problem.

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится
What's the feeling when you solved Div2.G with...
  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится -12 Проголосовать: не нравится

    What is quadrangle inequality?

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится +9 Проголосовать: не нравится

      Why does a pupil need to know that? Stop learning useless algorithms. Mr. bilibilitdasc can learn it because he's already IGM.

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится +3 Проголосовать: не нравится

      If a function $$$w$$$ satisfy $$$\forall l_1 \leq l_2 \leq r_1 \leq r_2, w(l_1, r_1) + w(l_2,r_2) \leq w(l_1,r_2)+w(l_2,r_1)$$$, it is said $$$w$$$ satisfy the quadrangle inequality.

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Where is the solution of 1875B?

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can someone explain me ,I have some doubt in 1875C — Jellyfish and Green Apple

I got till this part So we can uniquely find a set of positive integers S satisfying nm=∑i∈S12i

But how we get the answer by ,what is the logic We can use std::__builtin_popcount() to get |S|, the answer is m×|S|−n.

And moreover since we devided n and m by gcd(n,m), so first ideally we should compute no of operation for one group(the group we get by deviding m by gcd(m,n)) and then multiply that with gcd(n,m) to get the total operation.

  • »
    »
    14 месяцев назад, # ^ |
    Rev. 2   Проголосовать: нравится +3 Проголосовать: не нравится

    Each cut increases the number of apples by 1. Since each person needs to get |S| apples in his account, final number of apples will be m*|S|. Since there were initially n apples, so we get the cuts by subtracting this from final apples, hence the answer m*|S| — n.

    Also, for the intuition why to multiply a group ans by gcd(n,m) (as you say) goes by the following example. Suppose n = 30, m = 48. Then a = n/gcd(n,m) = 5 and b = m/gcd(n,m).= 8. Ans for one group is = 8*2-5 = 11. Now the number of groups have become 6 i.e. gcd(n,m). Hence the answer will be 11*6 = 66, which is same as that given by taking all n and m (48*2 — 30) = 66.

»
14 месяцев назад, # |
  Проголосовать: нравится +2 Проголосовать: не нравится

Fun fact: we add 1B to prevent the large gap between 1A and 1C.

And Atomic-Jellyfish got the idea of 1G, when playing game. (xd

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится +4 Проголосовать: не нравится

In div1 B, why there is $$$5^8$$$ cases instead of $$$4^8$$$ cases?

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Oh i understand

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      can you explain...i am still not getting it

      • »
        »
        »
        »
        14 месяцев назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Because your are going to record the shortest path's source and destinations, and since there maybe some types of $$$(a_i,b_i,m_i)$$$ that will not exist in the $$$(a,b,m)$$$, so except for all $$$(c,d)$$$ that is $$$(0/1, 0/1)$$$, there is another destination called "not exist", so the state is in total $$$(4+1)^8$$$.

        • »
          »
          »
          »
          »
          14 месяцев назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          what do you exactly mean by "some types of (ai,bi,mi) that will not exist in the (a,b,m)" ? can you give any example...thanks a lot

          • »
            »
            »
            »
            »
            »
            14 месяцев назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится

            For example, $$$a=(1111)_2,b=(1111)_2,m=(0001)_2$$$, in this case, pair $$$(1, 1, 0), (1, 1, 1)$$$ exist and others like $$$(0,0,1)$$$ not exist, so you only need to consider the shortest path from $$$(1, 1, 0), (1, 1, 1)$$$ to there specific $$$(c_i,d_i)$$$, so except the $$$4$$$ state $$$(0/1,0/1)$$$, in the pre-calculation there is another state which is "not exist"

            • »
              »
              »
              »
              »
              »
              »
              14 месяцев назад, # ^ |
                Проголосовать: нравится 0 Проголосовать: не нравится

              can you also attach your submission...tutorial solution is too complicated to understand

              • »
                »
                »
                »
                »
                »
                »
                »
                14 месяцев назад, # ^ |
                  Проголосовать: нравится 0 Проголосовать: не нравится

                I haven't implemented this problem yet, maybe later.

              • »
                »
                »
                »
                »
                »
                »
                »
                14 месяцев назад, # ^ |
                  Проголосовать: нравится +5 Проголосовать: не нравится
              • »
                »
                »
                »
                »
                »
                »
                »
                14 месяцев назад, # ^ |
                  Проголосовать: нравится +19 Проголосовать: не нравится

                I think the author used some math (base 5 number representation and bitmask) to encode the states.

                Let's see what does $$$5^8$$$ mean again? (thanks many helpful friend here helped me to understand it)

                • First, let's clarify this: Given same $$$(a,b,m)$$$ state of two different bit $$$i$$$ and $$$j$$$, no matter what we do, the resulting bits at position $$$i,j$$$ in $$$(x,y)$$$ must be the same.

                • From then we can just care about different $$$(a,b,m)$$$. For multiple bits that have same $$$(a_i,b_i,m_i)$$$, we can use one to represent the whole group. Now, effectively all numbers can be seen as some special 8-bit numbers.

                • The base, if is in range $$$0..3$$$, then corresponds to 4 cases of some arbitrary $$$(x_i, y_i)$$$ we can make from some $$$(a_i, b_i, m_i)$$$. If base equals $$$4$$$, it means that there isn't any $$$i$$$ such that $$$(a_i, b_i, m_i)$$$ forms the configuration $$$(a_{fixed}, b_{fixed}, m_{fixed})$$$ we're considering

                • The exponent, from $$$0$$$ to $$$7$$$, corresponds to the position, or more precisely the group I mentioned above.

                Take a look at this example: 00004002 is a base-5 number corresponding to a state:

                • Last digit is $$$2$$$. It means that the 0-th group, which is $$$(a,b,m) = (0,0,0)$$$, has $$$(x,y) = (1,0) \text{ (number 2)}$$$

                • 3-th digit is $$$4$$$, it means that the group $$$(a,b,m) = (0,1,1)$$$ contains no bit in it!

                • For the remaining 6 groups, they just have the same $$$(x,y) = (0,0)$$$

                So why do we have to represent data this way? In this representation, we see:

                • Destination and Starting point are being tied together (with destinations $$$(x,y)$$$ as digits, and starting point $$$(a,b,m)$$$ as position (or call it order, exponent, ...))

                • Although we kind of "separated" individual bits to come up with the solution, yet in the solution they must be stored together !? Because each operation AND, OR, XOR affects each bit of the numbers. They're all transforming after each operation, so their values must be recorded and observed altogether.

»
14 месяцев назад, # |
  Проголосовать: нравится +13 Проголосовать: не нравится

For E,how can I use BFS(breadth-first search) for preprocessing? I wonder why to use BFS and how to use BFS.

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Suppose we start with $$$x = 1$$$, $$$y = 1$$$, $$$m = 0$$$. What are the possible $$$(x, y)$$$ reachable using the 4 operations given and the minimum number of operations to achieve that state? We use BFS for that purpose.

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Each state of the numbers is a node, each operation changing from one state to another is an edge.

    Therefore, a sequence of operations that transforms the init. configuration to the desired configuration, is a path between 2 nodes.

    And minimum number of operations is just equivalent to the shortest path. In this case, it's unweighted graph so BFS is sufficient

»
14 месяцев назад, # |
  Проголосовать: нравится +11 Проголосовать: не нравится

In problem 1B, why there are $$$5^8$$$ states instead of just $$$4^8$$$?

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится +16 Проголосовать: не нравится

    $$$2 * 2$$$ for each possible $$$(c_i, d_i)$$$, and another $$$1$$$ corresponding to when there is no state for that $$$(x_i, y_i, m_i)$$$.

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Could somebody elaborate the following editorial for Div1D?

The only thing we need to do is the dot product of the functions, so the time complexity of the transition is also $$$O(n^4)$$$

Does it mean that is there a way to directly evaluate $$$[x^i] F_n(x)$$$ for each $$$i$$$ in $$$O(n^2)$$$ time? And what does it have to do with dot product?

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится +16 Проголосовать: не нравится

    I think what is meant is that you store all $$$F_k(x), k \leq n$$$ in point value form $$$ (i, F_k(i))$$$, for $$$O(n^2)$$$ points.

    Convenient is to use the points $$$i = 0,1,2,3,4, \dots$$$. All operations needed (summing, convolving two polynomials, shifting the polynomial with $$$x^n$$$) can be done in time linear in the size of the representation, so in $$$O(n^2)$$$. Afterwards, the only thing left is from the point value form of $$$F_n(x)$$$, going back to the coefficient form. This can be done with the lagrange interpolation formula in $$$O(n^4)$$$ with some tricks (You need to first with brute force calculate the coefficients of the polynomial $$$x \cdot (x-1) \cdot (x-2) \cdot \dots $$$, and do polynomial division to obtain each of the summands of the lagrange interpolation polynomial.

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится +8 Проголосовать: не нравится

      Ah, now I understand! So let me rephrase it:

      • For each $$$x = 0, \ldots, n(n+1)/2+1$$$, we want to evaluate $$$F_n(x) \in \mathbb F_p$$$. (I wrote $$$\mathbb F_p$$$ to emphasize that we want to find a scalar, not a polynomial)
      • To do so, let us fix $$$x$$$:
        • Then it is sufficient to find the sequence $$$\displaystyle \lbrace F_i(x) \rbrace_{i=0}^n$$$ of $$$\mathbb F_p$$$, successively from the initial element to the final.
        • The recurrence relation $$$\displaystyle F_i(x) = x^i \sum_{j=1}^i \binom{i-1}{j-1} F_{j-1}(x) F_{i-j}(x)$$$ enables us to find $$$F_i(x) \in \mathbb F_p$$$ for each $$$i$$$ in an $$$O(i)$$$ time.
        • Thus, $$$F_n(x)$$$ can be found in an $$$O(n^2)$$$ time.
      • Therefore, $$$\lbrace F_n(x) \rbrace_{x=0}^{n(n+1)/2 + 1}$$$ can be found in a total of $$$O(n^4)$$$ time.

      All that left is to do Lagrange interpolation, which I understand well. Thanks a lot for the explanation!

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Why my solution fails 226099505? Thanks in advance!

The input and output of my answer are the same as the example!!!

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can someone explain div2A. Why it isn't min(a-1, x-1) according to the condition

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    We get the optimal solution if we use the tool when the timer is at 1. If we increase the timer past $$$a$$$, it will be set to $$$a$$$. We have two outcomes:

    $$$(x + 1 \leq a):$$$ timer change, $$$1 \to x + 1 \to a$$$ increase of $$$a- 1$$$

    $$$(x + 1 < a):$$$ timer change, $$$1 \to x + 1$$$ increase of $$$x$$$

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

any better explaination for div2 c?

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    I'll try to explain it as best as I can.

    When dividing the n apples among the m people, if n is greater than or equal to m, we can give each person n // m apples. After doing this, we can disregard how many apples each person has because they all have the same amount. We can now focus on the n % m remaining apples.

    Let's say a = n % m. If we have no remaining apples (a == 0), then we have finished. Otherwise, we have to make a cuts to now give us 2 * a apples. If (2 * a) % m == 0, then we have finished. Otherwise, we have to make 2 * a more cuts to give us 4 * a apples. We do this until (a * 2^k) % m == 0, where k is the minimum number that satisfies the equation.

    Now we have to figure out when there is no answer. In order for there to be an answer, (a * 2^k) % m == 0. This means that a * 2^k == q * m for some integer q. In order for this equation to be satisfied, all of m's non-2 factors must also be in a. If m had a non-2 factor that weren't in a, then it wouldn't be a divisor (it can have some factors of 2 that aren't in a because of the 2^k factor). This means that gcd(a, m) must have all of the non-2 factors that m has. This means that m / gcd(a, m) must be a power of 2. We can perform this check at the beginning of program and then proceed.

    Here is what I did: https://mirror.codeforces.com/contest/1875/submission/226131697

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      nice explaination:) thanks a lot

    • »
      »
      »
      12 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      If m had a non-2 factor that weren't in a, then it wouldn't be a divisor (it can have some factors of 2 that aren't in a because of the 2^k factor). This means that gcd(a, m) must have all of the non-2 factors that m has.

      a * 2^k == q * m

      why q was not consider, can it have non-2 factors?

      • »
        »
        »
        »
        12 месяцев назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Let's ignore the 2^k for now. If a = q * m, it means that both q and m are factors of a. Therefore a must have any factors that q and m has. If a didn't have a factor that m has, for example, we could have something like 3^2 = q * (3 * 5), and there is no positive integer solution here for q.

        So, by this logic, we can see that all of m's factors must be present in a, so therefore gcd(a, m) = m, and m / gcd(a, m) = m / m = 1 (or in the original problem it must be 2^c for some c). So at the end of the day, q doesn't really matter at all.

    • »
      »
      »
      12 месяцев назад, # ^ |
      Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

      Thank you so much, you saved my life, oh, I'm really happy now that I found an explanation, I was so confused, I think you must be the maker of all editorials, I probably wouldn't understand without you why did we use m/gcd(m,n) at all, thanks very much :)

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

i learned a lot from problem C, thank you Atomic-Jellyfish

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится -13 Проголосовать: не нравится

:3

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

If max(a)>max(b), MAX=max(a). If min(a)=max(a), then min(a)>max(b), Jellyfish will do nothing. Otherwise, Jellyfish won't swap the apple with value MAX. In the tutorial for 1874A — Jellyfish and Game, can anyone explain to me what Otherwise means? Is do nothing and won't swap is different?

»
14 месяцев назад, # |
  Проголосовать: нравится +10 Проголосовать: не нравится

Think there's a mistake in 1874C — Jellyfish and EVA tutorial. The transition should be:

$$$ \forall 1 < i \leq k , g_{k, i} = g_{k-2, i-2} \times \frac{\mathbf{i - 2}}{k} + g_{k-2,i-1} \times \frac{k-i}{k} $$$

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Typo, thanks for the correction!

    • »
      »
      »
      14 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      For 1875C — Jellyfish and Green Apple can you please explain: why __builtin_popcount(a) is equal to |S|?

      • »
        »
        »
        »
        14 месяцев назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        For example, if a = 13, b = 32, each person will get 3 pieces of apple, a is 1101 in binary, 1101 = 1000 + 100 + 1(in binary), which is an apple piece with 8/32 kg, an apple piece with 4/32 kg, an apple piece with 1/32 kg.

        • »
          »
          »
          »
          »
          14 месяцев назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          ok i got this but why you have taken a = n / __gcd(n, m)??

          • »
            »
            »
            »
            »
            »
            14 месяцев назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится

            We need to reduce it to its simplest fraction. for example, n = 5, m = 20, n/m = 5/20 = 1/4, the popcount of n is 2 but the popcount of a is 1.

»
14 месяцев назад, # |
  Проголосовать: нравится +11 Проголосовать: не нравится

Can someone please explain the editorial of D1B?

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can someone please explain why gcd(m,n) in problem C Div.2

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Need a better explanation for div 2 E. It doesn't provide details about what preprocessing you're doing and how it helps in solving the tests.

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Atomic-Jellyfish may you explain a bit in detail what you mean "by greedy and induction" we would arrive at those conclusions? what induction step is there ? greedy would be I think just wanted to make the sum more at each round by the one who is making the move .

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    "By greedy and induction" means, we can get the result of k rounds of the game from the result of k-1 rounds of the game, for example, if k=2, Jellyfish will know what Gellyfish will do in the next round, which is the result of k=1, this is "induction". The result of k=1 is very easy, which is written in the tutorial — swap the max and min. Thus when k = 2, you can predict what your opponent will do next, for each of your operational scenarios, you will choose the best one, this is "greedy"

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How do we prove that the optimal answer is m×|S|−n for Div2 C? .

  • »
    »
    14 месяцев назад, # ^ |
    Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

    Somehow i managed to prove it myself.

    Let us assume that $$$\frac{m}{\text{gcd}(n, m)}$$$ is a power of $$$2$$$ . So we can say that $$$\frac{n}{m}$$$ can be finitely represented as some binary representation like $$$\sum_{i \in S} \frac{1}{2^i}$$$.Each individual people is going to get $$$\frac{n}{m}$$$ weight of apples and he will get this weight in denominations of $$$\frac{1}{2^i}$$$ . For each $$$i$$$ in $$$\sum_{i \in S} \frac{1}{2^i}$$$ we need to have exactly $$$m$$$ pieces . For an apple of weight $$$1$$$ we can get $$$2^x$$$ pieces each weighting $$$\frac{1}{2^x}$$$ and this will cost $$$2^x - 1$$$ cuts. For each $$$i$$$ in $$$\sum_{i \in S} \frac{1}{2^i}$$$ we need to have exactly $$$m$$$ pieces each weighting $$$\frac{1}{2^i}$$$ and it can be done using $$$\frac{m}{2^i}$$$ number of apples having initial weight of $$$1$$$ and for each apples it will cost $$$2^i - 1$$$ cuts . For each $$$i$$$ in $$$\sum_{i \in S} \frac{1}{2^i}$$$ we would need exactly $$$\frac{m}{2^i}(2^i - 1)$$$ cuts . Total number of cuts will be $$$\sum_{i \in S} \left(\frac{m}{2^i}(2^i - 1)\right)$$$ . We know that $$$\frac{n}{m} = \sum_{i \in S} \frac{1}{2^i}$$$, then $$$n = m \sum_{i \in S} \frac{1}{2^i}$$$.So, the expression $$$\sum_{i \in S} \left(\frac{m}{2^i}(2^i - 1)\right) = \sum_{i \in S} \left(m - \frac{m}{2^i}\right) = \sum_{i \in S} m - \sum_{i \in S} \frac{m}{2^i} = m|S| - n$$$.

    • »
      »
      »
      14 месяцев назад, # ^ |
      Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

      "Since the number of apple pieces is added to exactly 1 for each cut, So we just need to minimize the final number of apple pieces." So $$$m \times |S|$$$ is the final number of apple pieces, $$$n$$$ is the number of apple pieces in the beginning.

»
14 месяцев назад, # |
Rev. 2   Проголосовать: нравится +1 Проголосовать: не нравится

Solution for Div2 D with comments:

#include <bits/stdc++.h>
using namespace std;

#define MOD // 1000000007
typedef long long ll;
typedef unsigned long long ull;
typedef vector<ll> vll;
typedef vector<int> vi;
typedef vector<ull> vull;
typedef pair<ll, ll> pll;

#define umap unordered_map
#define vec vector
#define endl "\n"
#define pb push_back
#define ff first
#define ss second
#define all(x) x.begin(), x.end()


int main() {
    ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
    ll t; cin >> t;
    while (t--) {
      ll n; cin >> n;
      umap<ll, ll> counts;

      for (ll i=0; i<n; ++i) {
        ll v; cin >> v;
        counts[v]++;
      } 

      ll mex = 0;
      while (counts.find(mex) != counts.end())
        ++mex;
      
      // dp[i] stores the minimum value of m to reach
      // a mex of i. So we're trying to find dp[0].
      vll dp(mex+1, INT_MAX);

      // In the beginning value of m is 0
      dp[mex] = 0;

      // We find dp[i] from the higher values to the lower
      // values, till 0.
      for (ll cur_mex=mex-1; cur_mex >= 0; cur_mex--) {

        // For any given current mex, we can reach there from a
        // higher mex value. For eg. if initially the mex of the
        // array is 7. To reach a mex of 4, we can first
        // delete 5 and the delete 4, or directly delete 4.
        // (ofc you can delete 6 also, just an example.)
        for (ll prev_mex=cur_mex+1; prev_mex <= mex; ++prev_mex) {

          dp[cur_mex] = min(
            dp[cur_mex],

            // Suppose we're trying to reach 4 from a mex of 5,
            // and there are 3 4s. After deleting the value 4 for 2 times
            // the mex is still 5, so we add 5*2 = 10. But on
            // deleting the last 4 the mex is now 4 and we add 4.
            // In general the transition is
            // (c - 1)*prev + cur 
            dp[prev_mex] + (counts[cur_mex] - 1)*prev_mex + cur_mex
          );

        }
      }

      // The answer is minimum value of m to reach a mex of 0
      cout << dp[0] << endl;
    }
    
    return 0;
}
»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Great Round! div.1 CD are both counting problems, typical style of CNOI ig

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

In problem 1874C — Jellyfish and EVA, in second test case, I have no idea why the output is "0.625000000000".Please explain to me.

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

i understand the implement of div2G but i still don't know how do we get that formula. Can anyone help me explain that formula

»
14 месяцев назад, # |
  Проголосовать: нравится +10 Проголосовать: не нравится

amzing solution about div2c!

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I didn't understand how the graph is constructed in JellyFish and Math problem, author of this editorial didn't explicitly explain how it is done, and I am not able to figure it out from the code, any help will be appreciated. Thank you

  • »
    »
    14 месяцев назад, # ^ |
    Rev. 3   Проголосовать: нравится +8 Проголосовать: не нравится

    I've understood the problem, I'am going to write up the solution in complete detail because I believe the solution provided leaves out a lot of detail that are not obvious at all

    First we need to encode reachability information from initial state of $$$x=a, y=b$$$ We do that by focusing on each bit of $$$x, y$$$ and $$$m$$$ as follows (since bits are independent and same bit combination goes together)

    We're going to represent reachability information from initial state as follows

    For each possible combination of initial state $$$(a, b, m)$$$ there are only 4 possible states it can reach to $$$(0/1,0/1)$$$, and there are 8 possible initial states, so we can represent each of them using a 8-digit base 4 number, and we're only going to need $$$4^8$$$ possible configurations.

    Example : for configuration 00001003

    1. initial state (0,0,0) can reach 3 = (1,1)
    2. initial state (0,1,1) can reach 1 = (0,1)
    3. all the other state can reach (0,0)

    What is the initial configuration ? It is simple, for each digit corresponding to $$$(a, b, m)$$$, its value is simply $$$(ab)_2$$$

    Now, we want to find all such reachable configurations (cause clearly not all $$$4^8$$$ configurations are reachable), we do that by using the operations to define transitions

    Each configuration can reach to exactly 4 different configurations in a single step (using the different operations given as follows)

    Using operation op, we define the transition as

    For each digit corresponding to state $$$(a, b, m)$$$, say it is $$$(xy)_2$$$ we create new reachable state $$$(x'y')_2$$$ given by operation op (eg: in case of $$$op==1$$$ we have $$$x' = x\&y$$$, $$$y'=y$$$)

    Remark : We're changing all the digits because from a configuration of $$$(x,y)$$$, in one operation it changes all of its bits, so the all 8 groups must be changed to reflect that.

    All the configurations reachable from initial config in this graph are exactly all those configs that are reachable from init config (preserving the number of steps), kind of obvious but this construction is quite meticulous

    Now that we have this graph we can do a BFS over it starting from initial configuration, and we can get all the states reachable from it along with minimum number of steps to reach that particular state.

    Now, given $$$a,b,c,d,m$$$, we need to find a configuration where for each $$$(a_i, b_i, m_i)$$$ digit we have $$$(c_i, d_i)$$$ value at that digit, to find that we simply compute that configuration as say config and compute dist[config].

    In case we get in consistency, while computing config i.e. if different bits of input corresponding to same $$$(a, b, m)$$$ values but has different $$$(c, d)$$$ value, then that configuration is not reachable. Doing this requires 5 states instead of 4. (so we'll instead encode using 5 base numbers, using 4 to specify state isn't set or we can say 4 is don't care)

    What if dist[config] == INF ? In this case we do not have any immediate inconsistencies, but the state is simply not reachable in the directed graph

    Hope that was helpful

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

if m/gcd(n,m) is not an integral power of 2, there's no solution. can someone explain me this line of editorial of div2 question3

  • »
    »
    14 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    The denominator on each slice needs to be a power of two. For example, you couldn't make $$$\frac{1}{3}$$$ of an apple with slices of $$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\cdots$$$, thus if $$$n=1$$$ and $$$m=3$$$ you can immediately say it's not possible.

»
14 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

It's very interesting that 1C doesn't involve determining an actual optimal strategy, but instead we somehow just skip that and directly calculate the probability distribution of outcomes in an optimal strategy.

Not sure I followed how we ensure that the derived distribution corresponds to a valid strategy though. And how do you even come up with the recursion for $$$g_k$$$?

»
13 месяцев назад, # |
Rev. 2   Проголосовать: нравится +10 Проголосовать: не нравится

Why the div1 has the b div2 and doesn't have c&d div2 ?

»
12 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

.

»
12 месяцев назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Can someone explain why my method for calculating the expected number of step to reach $$$n$$$ in Div.1 D is wrong? I think on this for a few times but still can't find what stuff goes wrong :/

My approach is as followed:

First consider using linearity of expectation, we will get

$$$E[\text{# of steps needed to reach n from 0}] = \sum_\limits{i = 0}^{n - 1} E[\text{# of times edge (i, i + 1) being traversed}]$$$

then obviously every edge will be traversed from left to right, and every time it got traversed from right to left, it will also be traversed from left to right eventually, so we have

$$$E[\text{# of times edge (i, i + 1) being traversed}] \\ = 1 + 2 \times \sum_\limits{j = 0}^{\infty} Pr[\text{edge (i, i + 1) being traversed from right to left j times}] \times j \\ = 1 + 2 \times \sum_\limits{j = 1}^{\infty} Pr[\text{edge (i, i + 1) being traversed from right to left at least j times}] \\= 1 + 2 \times \sum_\limits{j = 1}^{\infty}(\frac{w_{i - 1}}{w_{i - 1} + w_i})^j = 1 + 2 \times \frac{w_{i - 1}}{w_i}$$$

which lead to the final answer

$$$n + 2\sum_\limits{i = 0}^{n - 1}\frac{w_{i - 1}}{w_i}$$$
»
9 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

include

include

include

using namespace std;

void solve() { long long int a, b, n; cin >> a >> b >> n;

vector<long long int> v;

int x; for (int i = 0; i < n; ++i) { cin>>x; v.push_back(x); }

int flag = 0;
int k = 0;
long long int sec = 0;
while (flag != 1) {
    if (b == 1 && k != v.size()) {
        b += v[k];
        k++;
        b--;
    } else {
        b--;
    }

    if (b == 0) {
        break;
    }

    if (b > a) {
        b = a;
    }

    sec++;
}

cout << sec << endl;

}

int main() { int t; cin >> t;

while (t--) {
    solve();
}

return 0;

} this code gives me timed exceed on second test can anything be done inorder to fix it ?

»
4 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Sick problems!

»
3 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
"Since you are one of the smartest people in the world" this flattered me THANK YOU !! (><)
DIV1 P1