Hello everybody)
help me with problem
we looking for quantity of integer solutions (x,y) equation ; |a|,|b| <=
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 156 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Name |
---|
I found this:
a.y + b.x = x.y
b.x = y.(x-a)
y=(b.x) / (x-a);
x,y are integers so (a|b means b%a=0)
x-a| b.x
x-a| b.x — b.(x-a)
x-a| b.x — b.x + a.b
x-a| a.b
for every z (z|a.b) there is an integer pair (x,y) suitable to all conditions. So the answer is same with quantity of divisors of a.b