这可以说是一道数论(? 首先可以发现$x$的取值为$[0,min(a,S/n)]$,$$$y$$$的取值为$$$S-xn$$$ $$$x$$$的取值最大为$$$min(a,S/n)$$$,得$$$y$$$的取值为$$$S-min(a,S/n)n$$$ 只要判断$y$是否小于等于$b$就好了
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
# | User | Contrib. |
---|---|---|
1 | cry | 166 |
2 | maomao90 | 163 |
2 | Um_nik | 163 |
4 | atcoder_official | 161 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | nor | 153 |
9 | Dominater069 | 153 |
这可以说是一道数论(? 首先可以发现$x$的取值为$[0,min(a,S/n)]$,$$$y$$$的取值为$$$S-xn$$$ $$$x$$$的取值最大为$$$min(a,S/n)$$$,得$$$y$$$的取值为$$$S-min(a,S/n)n$$$ 只要判断$y$是否小于等于$b$就好了
Name |
---|
Google Translate says:
"This can be said to be a number theory (? First, we can find that the value of $$$ x $$$ is $$$ [0, min (a, S / n)] $$$, and the value of y is S−xn. The maximum value of x is min (a , S / n), the value of y is S−min (a, S / n) n Just judge whether $$$ y $$$ is less than or equal to $$$ b $$$"