Where can I find some theory on 3d Mo's algorithm(like Mo's algorithm, but with updates)?
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Where can I find some theory on 3d Mo's algorithm(like Mo's algorithm, but with updates)?
Название |
---|
Auto comment: topic has been translated by ligaydima (original revision, translated revision, compare)
Take a look at this problem and its editorial: https://mirror.codeforces.com/contest/940/problem/F
Actual Discussion: https://mirror.codeforces.com/blog/entry/44711
Tl;dr version that I understood.
Online Mo's Algorithm : $$$O((N + Q)*N^{\frac{2}{3}})$$$
Method:
Group into contiguous buckets, each of size $$$N^{\frac{2}{3}}$$$.
So number of buckets = $$$N^{\frac{1}{3}}$$$