Innovative Washing Machine

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 megabytes

You are asked to help a team that participates in "Innovation Workshop" — an event where teams of students invent and prototype their innovative ideas. One of the teams developed a new innovative washing machine that significantly reduces the usage of energy needed for laundry.

The innovative idea was to use a convex polygon instead of a circle for the shape of a washing machine drum. You are given this polygon. A drum is rotating around some fixed point inside the polygon with a constant speed of 1 turn in 1 second.

Currently, the prototype is built and testing is started. There are s litres of water in the drum. At each moment of time, water under the influence of gravity occupies a region with area s at the bottom of the drum.

Vertices of the polygon that are underwater are under pressure. By Pascal's law, we know that pressure is proportional to depth. Let's define by d_1, d_2, \ldots, d_k depths of the vertices that are underwater at some moment of time, k is the number of underwater vertices. Let's define the *pressure imbalance* as the average difference between underwater vertex depth and the maximum underwater vertex depth, i.e.

 $\frac{1}{k}\sum_{i=1}^{k} \left(\max_{j=1}^{k} d_j - d_i\right).$ Note that the order of d_i is not important.

The polygon from the third test case is rotated. Vertices 1, 2, 3, 4, 8 are underwater.

To select the optimal shape of the drum, the team wants to know the expected value of pressure imbalance for the moment of time selected uniformly from segment [0,1] (in seconds). Please help the team to calculate this value.

Input

The first line contains a single integer t $(1 \le t \le 10^4)$ — the number of test cases. The next lines contain descriptions of test cases.

The first line contains two integers n, s $(3 \le n \le 2 \cdot 10^5, s \ge 1)$ — the number of vertices in the polygon and the number of litres of water inside the drum. It is guaranteed that s is less than the area of the polygon.

Each of the next n lines contains two integers x_i , y_i $(|x_i|, |y_i| \le 10^8)$ – coordinates of polygon vertices.

It is guaranteed that the given points form a convex polygon. The area of the polygon is positive and no two consecutive segments are collinear. The vertices of the polygon are given in counterclockwise order.

The sum of n for all test cases does not exceed $2 \cdot 10^5$.

Output

For each test case, print a single real number — the expected value of pressure imbalance for a random uniform moment of time.

Your answer will be accepted if its absolute or relative error does not exceed 10^{-5} ; formally, if p is your answer, and j is the jury's answer, this should hold: $\frac{|p-j|}{\max\{1,|j|\}} \leq 10^{-5}$.

Example

standard input	standard output
4	0.3729232286
4 2	0.1379212354
0 0	1.3663189952
2 0	0.2636965438
2 2	
0 2	
3 1	
1 -1	
0 1	
-1 -1	
8 18	
-2 1	
-2 -3	
-1 -4	
0 -4	
3 -3	
4 -1	
4 0	
-1 2	
4 1	
99999998 99999999	
99999999 9999998	
10000000 9999999	
99999999 10000000	