Innovative Washing Machine

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
1024 megabytes
You are asked to help a team that participates in "Innovation Workshop" - an event where teams of students invent and prototype their innovative ideas. One of the teams developed a new innovative washing machine that significantly reduces the usage of energy needed for laundry.
The innovative idea was to use a convex polygon instead of a circle for the shape of a washing machine drum. You are given this polygon. A drum is rotating around some fixed point inside the polygon with a constant speed of 1 turn in 1 second.
Currently, the prototype is built and testing is started. There are s litres of water in the drum. At each moment of time, water under the influence of gravity occupies a region with area s at the bottom of the drum.

Vertices of the polygon that are underwater are under pressure. By Pascal's law, we know that pressure is proportional to depth. Let's define by $d_{1}, d_{2}, \ldots, d_{k}$ depths of the vertices that are underwater at some moment of time, k is the number of underwater vertices. Let's define the pressure imbalance as the average difference between underwater vertex depth and the maximum underwater vertex depth, i.e. $\frac{1}{k} \sum_{i=1}^{k}\left(\underset{j=1}{k} \max _{j=1} d_{j}-d_{i}\right)$. Note that the order of d_{i} is not important.

The polygon from the third test case is rotated. Vertices $1,2,3,4,8$ are underwater.
To select the optimal shape of the drum, the team wants to know the expected value of pressure imbalance for the moment of time selected uniformly from segment $[0,1]$ (in seconds). Please help the team to calculate this value.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{4}\right)$ - the number of test cases. The next lines contain descriptions of test cases.
The first line contains two integers $n, s\left(3 \leq n \leq 2 \cdot 10^{5}, s \geq 1\right)$ - the number of vertices in the polygon and the number of litres of water inside the drum. It is guaranteed that s is less than the area of the polygon.
Each of the next n lines contains two integers $x_{i}, y_{i}\left(\left|x_{i}\right|,\left|y_{i}\right| \leq 10^{8}\right)$ - coordinates of polygon vertices.

It is guaranteed that the given points form a convex polygon. The area of the polygon is positive and no two consecutive segments are collinear. The vertices of the polygon are given in counterclockwise order.
The sum of n for all test cases does not exceed $2 \cdot 10^{5}$.

Output

For each test case, print a single real number - the expected value of pressure imbalance for a random uniform moment of time.
Your answer will be accepted if its absolute or relative error does not exceed 10^{-5}; formally, if p is your answer, and j is the jury's answer, this should hold: $\frac{|p-j|}{\max \{1,|j|\}} \leq 10^{-5}$.

Example

standard input	standard output
4	0.3729232286
42	0.1379212354
00	1.3663189952
20	0.2636965438
22	
02	
31	
1-1	
01	
-1 -1	
818	
$\begin{array}{ll}-2 & 1\end{array}$	
-2 -3	
-1 -4	
0-4	
3-3	
4-1	
40	
-12	
41	
9999999899999999	
9999999999999998	
10000000099999999	
99999999100000000	

