## Attraction Score

Input file:
Output file:
standard input
Time limit:
standard output
Memory limit:
6 seconds
1024 megabytes

There are $n$ cities, numbered from 1 to $n$, in the fictional country of Manteiv. We can consider these cities to be on a flat plane with a 2 D coordinate system, where city $i$ is at coordinates $\left(x_{i}, y_{i}\right)$. No two cities are located at the same position.

There are $m$ highways, numbered from 1 to $m$, each of which is a line segment with two different cities as its endpoints and has a number of attraction points alongside it. Specifically, highway $j$ has $a_{j}$ attraction points and connects cities $u_{j}$ and $v_{j}$ as its endpoints. Having intersections on highways causes traffic jams, and building a highway on top of another highway costs a lot of money. Therefore, it is guaranteed that

- no two highways intersect at any point other than at a city,
- no highway passes through a city other than its two endpoints, and
- there is at most one highway connecting each pair of cities.

The Manteiv Ministry of Tourism would like to choose a subset of cities as tourist attractions. Intuitively, the ministry would like many pairs of chosen cities to be connected by a highway with many attraction points. Formally, the attraction score of a non-empty subset of cities $S$ is defined as follows:

- For every pair of integers $(a, b)$ where $a<b$, cities $a$ and $b$ are in $S$, and they are connected by a highway, add the number of attraction points on the highway to the score.
- Let $f(S)$ be the number of pairs of integers $(a, b)$ where $a<b$, cities $a$ and $b$ are in $S$, and they are not connected by a highway. The score incurs a penalty (negative) score of $10^{6}$ multiplied by the square of $f(S)$. In other words, subtract $10^{6} \times f(S)^{2}$ from the score.

For example, let $n=3$, cities 1 and 2 be connected by a highway with 10 attraction points, cities 2 and 3 be connected by a highway with 20 attraction points, and cities 1 and 3 not be connected by a highway.

- The attraction score of the subset of cities $\{1\}$ is 0 .
- The attraction score of the subset of cities $\{1,2\}$ is $10-10^{6} \times 0^{2}=10$.
- The attraction score of the subset of cities $\{2,3\}$ is $20-10^{6} \times 0^{2}=20$.
- The attraction score of the subset of cities $\{1,2,3\}$ is $10+20-10^{6} \times 1^{2}=-999970$.

As an advisor to the ministry, you would like to find the maximum attraction score among all possible non-empty subsets of cities $S$.

## Input

The first line of input contains two integers $n$ and $m(1 \leq n \leq 100000 ; 0 \leq m \leq 300000)$. Each of the next $n$ lines contains two integers. The $i$-th line contains $x_{i}$ and $y_{i}\left(0 \leq x_{i}, y_{i} \leq 10^{9}\right)$. Each of the next $m$ lines contains three integers. The $j$-th line contains $u_{j}, v_{j}$, and $a_{j}\left(1 \leq u_{j}<v_{j} \leq n ; 0 \leq a_{j} \leq 10^{6}\right)$. The highways are guaranteed to satisfy the conditions in the problem statement.

## Output

Output an integer representing the maximum attraction score among all possible non-empty subsets of cities $S$.

## Examples

|  | standard input | standard output |  |
| :--- | :--- | :--- | :--- |
| 3 | 2 |  | 20 |
| 0 | 0 |  |  |
| 0 | 1 |  |  |
| 1 | 0 |  |  |
| 1 | 2 | 10 |  |
| 2 | 3 | 20 | 60 |
| 3 | 3 |  |  |
| 0 | 0 |  |  |
| 0 | 1 |  |  |
| 1 | 0 |  |  |
| 1 | 2 | 10 | 3 |
| 2 | 3 | 20 | 3 |

## Note

Explanation for the sample input/output \#1
This sample is the example given in the problem statement above. The subset of cities $\{2,3\}$ gives the highest attraction score of 20 .

Explanation for the sample input/output \#2
The cities and highways are illustrated by Figure 1. By choosing cities 1,2 , and 3 in $S$, the attraction score would be $10+20+30-10^{6} \times 0^{2}=60$.


Рис. 1: Illustration of sample input $\# 2$.

