Codeforces Round 943 (Div. 3) |
---|
Finished |
This is the easy version of the problem. In this version $$$l=r$$$.
You are given a string $$$s$$$. For a fixed $$$k$$$, consider a division of $$$s$$$ into exactly $$$k$$$ continuous substrings $$$w_1,\dots,w_k$$$. Let $$$f_k$$$ be the maximal possible $$$LCP(w_1,\dots,w_k)$$$ among all divisions.
$$$LCP(w_1,\dots,w_m)$$$ is the length of the Longest Common Prefix of the strings $$$w_1,\dots,w_m$$$.
For example, if $$$s=abababcab$$$ and $$$k=4$$$, a possible division is $$$\color{red}{ab}\color{blue}{ab}\color{orange}{abc}\color{green}{ab}$$$. The $$$LCP(\color{red}{ab},\color{blue}{ab},\color{orange}{abc},\color{green}{ab})$$$ is $$$2$$$, since $$$ab$$$ is the Longest Common Prefix of those four strings. Note that each substring consists of a continuous segment of characters and each character belongs to exactly one substring.
Your task is to find $$$f_l,f_{l+1},\dots,f_r$$$. In this version $$$l=r$$$.
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases.
The first line of each test case contains two integers $$$n$$$, $$$l$$$, $$$r$$$ ($$$1 \le l = r \le n \le 2 \cdot 10^5$$$) — the length of the string and the given range.
The second line of each test case contains string $$$s$$$ of length $$$n$$$, all characters are lowercase English letters.
It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2\cdot 10^5$$$.
For each test case, output $$$r-l+1$$$ values: $$$f_l,\dots,f_r$$$.
73 3 3aba3 3 3aaa7 2 2abacaba9 4 4abababcab10 1 1codeforces9 3 3abafababa5 3 3zpozp
0 1 3 2 10 2 0
In the first sample $$$n=k$$$, so the only division of $$$aba$$$ is $$$\color{red}a\color{blue}b\color{orange}a$$$. The answer is zero, because those strings do not have a common prefix.
In the second sample, the only division is $$$\color{red}a\color{blue}a\color{orange}a$$$. Their longest common prefix is one.
Name |
---|