Codeforces Round 574 (Div. 2) |
---|
Finished |
Each evening after the dinner the SIS's students gather together to play the game of Sport Mafia.
For the tournament, Alya puts candies into the box, which will serve as a prize for a winner. To do that, she performs $$$n$$$ actions. The first action performed is to put a single candy into the box. For each of the remaining moves she can choose from two options:
Thus, if the box is empty, then it can only use the second option.
For example, one possible sequence of Alya's actions look as follows:
This way she will perform $$$9$$$ actions, the number of candies at the end will be $$$11$$$, while Alya will eat $$$4$$$ candies in total.
You know the total number of actions $$$n$$$ and the number of candies at the end $$$k$$$. You need to find the total number of sweets Alya ate. That is the number of moves of the first option. It's guaranteed, that for the given $$$n$$$ and $$$k$$$ the answer always exists.
Please note, that during an action of the first option, Alya takes out and eats exactly one candy.
The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \le n \le 10^9$$$; $$$0 \le k \le 10^9$$$) — the total number of moves and the number of candies in the box at the end.
It's guaranteed, that for the given $$$n$$$ and $$$k$$$ the answer exists.
Print a single integer — the number of candies, which Alya ate. Please note, that in this problem there aren't multiple possible answers — the answer is unique for any input data.
1 1
0
9 11
4
5 0
3
3 2
1
In the first example, Alya has made one move only. According to the statement, the first move is always putting one candy in the box. Hence Alya ate $$$0$$$ candies.
In the second example the possible sequence of Alya's actions looks as follows:
This way, she will make exactly $$$n=9$$$ actions and in the end the box will contain $$$1+2-1-1+3-1+4-1+5=11$$$ candies. The answer is $$$4$$$, since she ate $$$4$$$ candies in total.
Name |
---|