Quick question about floor and ceiling when dividing in an inequality
Difference between en1 and en2, changed 6 character(s)
I'm aware that if $2x \leq y$ then $x \leq \lfloor y/2 \rfloor$, and that if $2x \geq y$ then $x \geq \lceil y/2 \rceil$↵

I usually remember that by writing examples like $x \in
 \{$ {$2,3\$}, $y=5$. But I don't quite get the logic behind that and I'm not sure if it's a general rule that $kx \leq y \rightarrow x \leq \lfloor y/k \rfloor$.↵

Any help with understanding that or resources to read about it would be greatly appreciated. Thanks!

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en2 English SuperSheep 2023-02-02 03:22:12 6 Tiny change: 'ike $x \in \{2,3\}, y=5$. But ' -> 'ike $x \in$ {$2,3$}, $y=5$. But ' (published)
en1 English SuperSheep 2023-02-02 03:17:59 508 Initial revision (saved to drafts)