WTF, lol, How is this problem 2000 difficulty? https://mirror.codeforces.com/problemset/problem/1919/H
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
# | User | Contrib. |
---|---|---|
1 | cry | 166 |
2 | maomao90 | 163 |
2 | Um_nik | 163 |
4 | atcoder_official | 161 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | nor | 153 |
9 | Dominater069 | 153 |
WTF, lol, How is this problem 2000 difficulty? https://mirror.codeforces.com/problemset/problem/1919/H
Let $$$m$$$ be some positive integer (not necessary prime) . There is a way to calculate $$$\displaystyle{\frac{a}{b}}\%m$$$ when b is not very big and $$$a \% b = 0$$$ Firstly, let's notice, that $$$\displaystyle{\frac{a}{b}}=mk+(a/b)\%m$$$, for some integer value k. Now, let's do some mathematical stuff:
So, the answer is $$$(a\%mb)/b$$$
Name |
---|