Блог пользователя Kiraru

Автор Kiraru, 2 года назад, По-английски

This is a problem that came to me by chance and I don't know how to solve it

  1. Given n positive integers

  2. Choose any two integers a and b and merge them into a+b, the cost of the operation is max(a,b)

  3. Repeat the operation until there is only one number left, find the minimum possible cost

I found a similar problem on the web, and in that one, the cost of the operation is a+b.

In that problem, the solution is to choose the smallest two integers in every operation.

Unfortunately, it can't work in this problem.

For example

1 2 2 3

If we always choose the smallest two integers

the process will be 1 2 2 3 -> 2 3 3 -> 3 5 -> 8 and the cost is 2+3+5=10

However,if we do like this: 1 2 2 3 -> 2 2 4 -> 4 4 -> 8, the cost will be 3+2+4=9

  • Проголосовать: нравится
  • +41
  • Проголосовать: не нравится

»
2 года назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

Can you give a link to the problem?

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

You should go for a Greedy method:

sort the array, always operate on A[i] and A[i+1] such that A[i+1]-A[i] is smallest.

I have not proven it neither found a counter-example but I hope you may found this helpful!

  • »
    »
    2 года назад, # ^ |
    Rev. 2   Проголосовать: нравится +11 Проголосовать: не нравится

    sorry, but I seems to find a hack.

    array: 2 5 10 11

    greedy process: 2 5 10 11 -> 2 5 21-> 7 21 ->28, and the cost is 11+5+21=37

    but there is a better way: 2 5 10 11-> 7 10 11-> 11 17 ->28, and the cost is 5+10+17=32

    upd: well, even the sample given in the statement (1 2 2 3) can hack this method

»
2 года назад, # |
  Проголосовать: нравится -18 Проголосовать: не нравится

It sounds like a dp, cause greedy solutions doesnt work

»
2 года назад, # |
Rev. 2   Проголосовать: нравится -29 Проголосовать: не нравится

Q

»
2 года назад, # |
Rev. 4   Проголосовать: нравится 0 Проголосовать: не нравится

How about we take an approach based on, instead of constructing the total from the bottom, we partition the final number into two and recurse? For example, we start from the total sum — $$$8$$$ in your example, can be represented in multiple ways, 4+4and 3 more. I think we may be able to construct a DP solution, but I am not yet fully able to implement one.

  • »
    »
    2 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    UPDATE: I think I came up with the states for DP, It could be done by $$$DP[N]=min_{m=ceil(N/2)}^{N} {DP[N-m]+DP[m]+m}$$$. However I think, in this case, keeping the array's state would be very hard.

»
2 года назад, # |
  Проголосовать: нравится +24 Проголосовать: не нравится

Can you guys think before commenting? Every comment is "well maybe it works if we always take the two cutest numbers" with no analysis, proof or even vague intuition.