Блог пользователя awoo

Автор awoo, история, 22 месяца назад, По-русски

1792A - GamingForces

Идея: BledDest

Разбор
Решение (Neon)

1792B - Стендап комик

Идея: BledDest

Разбор
Решение (awoo)

1792C - Min Max сортировка

Идея: BledDest

Разбор
Решение (Neon)

1792D - Перестановки с неподвижным префиксом

Идея: BledDest

Разбор
Решение (awoo)

1792E - Таблица и делители

Идея: adedalic

Разбор
Решение (adedalic)

1792F1 - Покраска графа (простая версия)

Идея: BledDest

Разбор
Решение (BledDest)

1792F2 - Покраска графа (сложная версия)

Идея: BledDest

Разбор
Решение (BledDest)
  • Проголосовать: нравится
  • +114
  • Проголосовать: не нравится

»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Isn't it possible to have an O(n) solution for problem C (Min Max Sort)?

  • »
    »
    22 месяца назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    yeah, there's an easy $$$O(n)$$$ solution for problem C, involving using the array $$$pos[i]$$$, to get the position of index $$$i$$$ in the permutation, then start at the middle value and finding the $$$LIS$$$ to both side. My submission: 190340250

  • »
    »
    22 месяца назад, # ^ |
      Проголосовать: нравится +13 Проголосовать: не нравится

    maybe you read only the last line.

    read the third last line.

»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can somebody explain how to come up with the equation in problem B.

  • »
    »
    22 месяца назад, # ^ |
    Rev. 3   Проголосовать: нравится +10 Проголосовать: не нравится

    Here, the Optimal strategy to solve the problem is by first saying all the jokes that both Alice and bob likes. (type 1 jokes) then by saying jokes alternately that (Alice likes,bob doesn't) and vice versa.

    Equation: a1 + min(a2,a3) x 2
    

    Final strategy is to say remaining jokes : first by saying remaining type 2, type 3 jokes and then by saying the jokes that both doesn't like (Type 4). this should be compared with the points that he already acquired hence a1 is taken. We take a1 + 1 as the judges goes when points become negative. Hence we add 1 to make it -1. Finally, We take the minimum of both these values to form the final equation.

    Equation: a1 + min(a2,a3).2 + min(a1 + 1,abs(a2 - a3) + a4)
    
»
22 месяца назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Does anyone have an idea on proving the efficiency of bisearch-on-divisors approach for prob. E? Never expected it will be this fast = =

»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can somebody explain what is the meaning of run binary search on k in problem C tutorial?

»
22 месяца назад, # |
Rev. 2   Проголосовать: нравится +62 Проголосовать: не нравится

For whatever it's worth, here's my $$$O(n \log n)$$$ solution for problem F.

First, we notice that the property for the set $$$S$$$ is the same as having a one-colored cut in $$$S$$$ (in other words, the set of vertices can be split into $$$S_1$$$ and $$$S_2$$$ so that all edges between $$$S_1$$$ and $$$S_2$$$ have the same color). The only issue is that a given set $$$S$$$ can possibly be split into $$$S_1$$$ and $$$S_2$$$ in several ways. So I introduce $$$f(n)$$$ to be equal to the number of graphs on $$$n$$$ vertices where the global cut is blue. Then the answer is $$$2 f(n) - 2$$$, since the global cut may be red, but $$$2$$$ extra cases arise when all edges have the same color.

To find $$$f(n)$$$ we need to partition the set of $$$n$$$ vertices into $$$k \geq 2$$$ subsets so that vertices from different subsets are connected by blue edges, but the subsets themselves obey the rules recursively (they have global cuts of red edges). Since $$$f_{\text{red}} = f_{\text{blue}}$$$, we have

$$$ f(n) = \sum\limits_{k \geq 2}~ \sum\limits_{a_1 + \ldots + a_k = n} C(a_1, \ldots, a_k) \cdot f(a_1) \cdot \ldots \cdot f(a_k),$$$

where $$$C(a_1, \ldots, a_k)$$$ roughly means the number of ways to choose subsets of sizes $$$a_1, \ldots, a_k$$$ from a set of size $$$n = a_1 + \ldots + a_k$$$. If $$$b_1$$$ occurs $$$c_1$$$ times, $$$\ldots$$$, $$$b_m$$$ occurs $$$c_m$$$ times within the multiset $$${ a_1, \ldots, a_k}$$$, then

$$$C(a_1, \ldots, a_k) = \frac{n!}{a_1! \cdot \ldots \cdot a_k! \cdot c_1! \cdot \ldots \cdot c_m!}.$$$

Define $h(n) = \frac{f(n)}{n!}.$ The base values are $$$h(0) = 0, h(1) = 1$$$. Via $$$H(x)$$$ we denote the generating function of $$$h$$$: $$$H(x) = h(0) + h(1) \cdot x + h(2) \cdot x^2 + \ldots$$$. After a careful examination (I don't know how to prove rigorously it though) we obtain

$$$ e^{H(x)} = 2H(x) + 1 - x.$$$

Everything else is the standard approach of how to solve these recurrences: if we know $$$H(x) \bmod{x^{m}}$$$, then from the equality above we can obtain $$$H(x) \bmod{x^{2m}}$$$. Underneath we need FFT (NTT) and an exponential generating function. Each step from $$$m$$$ to $$$2m$$$ takes $$$O(m \log m)$$$ time, so the overall complexity if $$$O(n \log n)$$$.

»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I don't get why we have to make sure that no set of vertices is connected by both colors in F1. Doesn't the lemma proved it impossible to connect a set of vertices with both colors?

  • »
    »
    22 месяца назад, # ^ |
    Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

    The lemma proves the other thing: it is impossible to have a set of vertices which is neither blue-connected nor red-connected.

»
22 месяца назад, # |
  Проголосовать: нравится +10 Проголосовать: не нравится

A-F1 video editorial for Chinese:

BiliBili

»
22 месяца назад, # |
Rev. 3   Проголосовать: нравится +18 Проголосовать: не нравится

In fact, we can calculate the convolution-like sequences (such as those in problem F) in $$$O(n \log^2 n)$$$ or $$$O(n \log^2 n / \log \log n)$$$ or even faster. One can find the approach from Elegia's report. The implementations usually has lower constant factor in time than those of the Newton iteration (if exist).

Here is my implementation, which imitates Elegia's implementations for other problems.

(but it's just as fast as a brute force lol)

  • »
    »
    22 месяца назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Do you have this report as a PDF?

    • »
      »
      »
      22 месяца назад, # ^ |
        Проголосовать: нравится +24 Проголосовать: не нравится
      • »
        »
        »
        »
        22 месяца назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Do you know how to find ref. [5] (罗煜翔。(2020)。浅谈 Nimber 和多项式算法。IOI2020 中国国家集训队论⽂集。) ? I wanna see how to do semi-relaxed multiplication in $$$ \frac{n\log ^2 n}{\log \log n} $$$(if that's what it says). And what nimbers have to do with it xd.

        • »
          »
          »
          »
          »
          22 месяца назад, # ^ |
            Проголосовать: нравится +8 Проголосовать: не нравится

          Let's discuss about it here, actually in that report, most contents are just putting the general algorithm into the nimber framework. Nimber does not play an important role in the relaxed convolution.

»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

"The array may large" in E made me realise how I don't trust my gut feeling at all.

»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Where does the log(divs(m)) of the complexity in question E come from Isn't it only need O(divs(m)⋅z(m)) to calculate the dp array?

»
22 месяца назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

can somebody explain why in D if we use lower_bound ans EITHER result or the previous one? why not just result? thanks in advance

  • »
    »
    22 месяца назад, # ^ |
      Проголосовать: нравится +1 Проголосовать: не нравится

    It depends on the value immediately after the longest common prefix. While searching for $$$p$$$, you find some inverse $$$q_1, q_2, \dots, q_m$$$ that starts with $$$p_1, p_2, \dots, p_k$$$ for some $$$k$$$. The next value is different. If $$$q_{k+1} > p_{k+1}$$$, then lower_bound will point at $$$q$$$ (or one of inverses with such prefix if there are multiple). However, if $$$q_{k+1} < p_{k+1}$$$, then $$$q$$$ will be smaller than $$$p$$$, and lower_bound will jump over it. The next inverse has to be greater than $$$p$$$, so you only have to look one step behind.

»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

For D, I thought while $$$n=5\times 10^4$$$, the number of subsets of $$$\{1,...,m\}$$$ is $$$10^3$$$.

So I constructed a map $$$M$$$ mapping each subset $$$L\subset \{1,...,m\}$$$ to $$$\{(a_i[p_1], ..., a_i[p_t])\ |\ i\in \{1,...,n\},\ \{p_1<...<p_t\}=L\}$$$. Then I iterated over every permutation and every $$$k$$$ to see whether the corresponding $$$k$$$ locations have the desired values.

For constructing $$$M$$$, it seemed that I can iterate over all subsets of $$$\{1,...,m\}$$$ and for each subset iterate over all permutations. This 2-layered loop is about $$$5\times 10^7$$$. But my actual implementation requires $$$O(2^m\times n\times m\times \log(n))\approx 8\times 10^9$$$ and thus got TLE. Not sure whether this is optimizable.

»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I have some questions in problem F1

  1. Why iterate k — the number of vertices whick are in the same 'red' component as 1 but not iterate the blue component, is this because you are counting the blue component?

  2. What about the edges between vertices in the same componet as 1 and the rest vertices, are they must be the same color? how to proof?

Hope someone can help me, thx a lot

  • »
    »
    22 месяца назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится
    1. We are considering the case when the whole graph is blue-connected, so there's no need to iterate on the blue component. The case when the graph is red-connected is symmetric to it.
    2. It's easy to see that all these edges are blue, since any red edge between any vertex from the "red" component of vertex 1 and any vertex outside this component means that we haven't picked the whole component
»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can someone give a test case on which my code is failing? I couldn't view the 156th item of 2nd test case. Is there any way to view it?

  • »
    »
    22 месяца назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Click the "Click to see detail" button in the bottom of the page to see the detailed test cases

»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

has anyone solved problem C with binary search ?

  • »
    »
    20 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится
    Code
»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

NEED PROVEMENT FOR PROBLEM F

»
22 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

F1's solution is flawed I guess. Consider case with n=3, when A1=B1=1, A2=2, B2=1, you get B3=4 which is incorrect.

  • »
    »
    22 месяца назад, # ^ |
    Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

    So what's wrong with the $$$B_3=4$$$?

    • »
      »
      »
      22 месяца назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      A3 which is the answer for n=3 is 6 in the pretest case, but surely 6 is not 4 * 2 :P

      • »
        »
        »
        »
        22 месяца назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Well, maybe the tutorial forget something or i just didn't see.

        But don't forget the limitation 1 and 2.

        The $$$A_3=8$$$ contains the case that all blue and all red.

  • »
    »
    22 месяца назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    Sorry, I initially stated the problem without the constraints "at least one edge should be red" and "at least one edge should be blue". I wrote the editorial for that version, but then decided to introduce these constraints. So, the actual answer is $$$A_n-2$$$ since we need to discard the case "all edges are red" and the case "all edges are blue".

»
19 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Time for problem E should be more strict. The following brute force solution passes:

Generate an array of increasing divisors. Make a copy and maintain it in std::set<long long>. For each divisor $$$d_i$$$ in the original array, find the number of divisors that has $$$d_i$$$ as its first row, i.e. start from divs_set.lower_bound(d_i * d_i) and iterate until the value is greater than $$$d_i * n$$$, counting the number of divisors that are a multiple of $$$d_i$$$, and remove them from the set afterwards.

»
18 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can someone give some intuition why way 2 in E works

»
13 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

In editorial of problem E,it is mentioned that " There is also a way to get rid of extra log(divs(m)) factor if you iterate through dp in a smart way ".

How to do so? Could not find anything in comments and figure out neither.

»
9 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

is it possible to solve problem 'D' using trie?