This question is tagged with dp, therefore I thought this could be solved with dp, I Tried but couldn't find the transition states.can anyone help ?? please.
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
This question is tagged with dp, therefore I thought this could be solved with dp, I Tried but couldn't find the transition states.can anyone help ?? please.
Name |
---|
My submission
Let
cnt[i]
be the count of indices wherea[j] < j
for all $$$1\leq j \leq i$$$. The transition would becnt[i] = cnt[i-1] + (1 if a[i] < i)
. The final answer would then be $$$\sum_{i=1}^{n} \text{cnt}[a[i]-1]$$$.thanks