yoco's blog

By yoco, history, 5 months ago, In English

I was practicing DP through CSES when I got to the Two Sets II problem, wherein I got the confusion on the usage of mod to get the correct answer.

I had read earlier that if we wish to take mod of a summation, we have to take mod of individual elements of the series and then take the mod of summation.

$$$ \text{ans} = ( \sum_{i=1}^{n} (a[i] \% \text{mod})) \% \text{mod} $$$

But here are my two submitted codes:

  1. Accepted: not taking the overall mod on summation.
  2. Wrong Answer: taking the overall mod on summation.
Wrong Answer Code
Accepted Code

Due to this, I got confused about how we should be taking the mod and, in general, how you tackle such situations. (Right now, I'm looking for a discussion like the one from which I got to know of the binary search method of while (r-l > 1), which I now use, so I can only stress more on the concept of the problem.)

  • Vote: I like it
  • +6
  • Vote: I do not like it

»
5 months ago, # |
  Vote: I like it 0 Vote: I do not like it

Whenever the sum can be bigger than the mod you must take a mod, which is almost always. For example if you add two numbers the max of each of them is MOD-1 so the sum can be 2*MOD-2. In CP, you don't need to decide on where to add mod though just put it after every operation. Some people use auxillary functions or even mod int templates.

PS: If the thing you are taking mod of can be negative you must make it positive because in C++ mod works in a way different than math (see Auxillary for example).

Auxillary
  • »
    »
    5 months ago, # ^ |
      Vote: I like it 0 Vote: I do not like it

    "if you add two numbers the max of each of them is MOD-1 so the sum can be 2*MOD-2"

    "Whenever the sum can be bigger than the mod you must take a mod, which is almost always."

    Yes, but then that gave me the wrong answer while taking up the mod on the sum and rather got accepted when I removed the mod on the sum. My major confusion is why taking mod on sum caused us harm. It is not getting a negative value anywhere in between so we won't have conflict in there.

    • »
      »
      »
      5 months ago, # ^ |
        Vote: I like it 0 Vote: I do not like it

      Actually the problem in your case is not with taking overall mod. In fact, I am not sure if it can be hacked but it looks like it is a coincidence that it passed. It is not possible to divide numbers in mod, it is required to use a "modular inverse" to do that. https://cses.fi/paste/e0c08c1dc65da1609789a7/

      I wonder if someone can prove or disprove that dividing by 2 in that case works.

»
5 months ago, # |
  Vote: I like it +3 Vote: I do not like it

CSES submissions are private.

  • »
    »
    5 months ago, # ^ |
      Vote: I like it 0 Vote: I do not like it

    Oh thanks a lot for that, I'm sorry I didn't knew about that and have now put them in spoilers.

»
5 months ago, # |
  Vote: I like it +6 Vote: I do not like it

another thing — you can't just divide a number under mod to get the correct answer. you should be multiplying by the modular inverse.

  • »
    »
    5 months ago, # ^ |
      Vote: I like it 0 Vote: I do not like it

    so can it be hacked? My code, which got accepted.

    and did you mean that it has to be (num * inv) % mod? I didn't understood that part.

    • »
      »
      »
      5 months ago, # ^ |
        Vote: I like it 0 Vote: I do not like it

      I couldn't prove why it works but when I tried n from 1 to 500 I couldn't find a hack, so you are safe.

»
5 months ago, # |
  Vote: I like it 0 Vote: I do not like it

You can try writing the first one as

dp[i][j] = ((take % mod) + (notTake % mod) + mod) % mod;
»
5 months ago, # |
  Vote: I like it 0 Vote: I do not like it

Modulo