How to solve today's C problem if alphabet is not $$$26$$$ characters but rather $$$O(n)$$$? I could only come up with simple offline $$$O(q \sqrt n)$$$ solution using basic MO algorithm. Any ideas?
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
How to solve today's C problem if alphabet is not $$$26$$$ characters but rather $$$O(n)$$$? I could only come up with simple offline $$$O(q \sqrt n)$$$ solution using basic MO algorithm. Any ideas?
Name |
---|
How do you solve it in $$$\sqrt{n}$$$ per query?
Mo's algorithm: you can maintain answer for segment $$$(l, r)$$$ and recalculate it in $$$O(1)$$$ when moving borders. That's basics of MO.