Блог пользователя truth

Автор truth, 5 месяцев назад, По-английски

Problem Link : 1995C - Squaring

I have tried to implement the float method from the editorial.

Editorial solution

I am using base 2 for log here. In the first code, I am calculating the difference of b[i-1] and b[i], tmp is the number of times log(2)=1 has to be added into b[i]. If b[i-1]-b[i]>0, We are adding it's ceil value to the total operations ( ops ) and also to b[i] itself.

However this solution gives wrong answer on test-case 2, my guess is my outputs are bigger than answer expected.

Note: I have removed input templates from codes to make them short, rest is intact. You can also refer to the submission links.

Code with wrong answer

code with ceil()

submission : 272991530

While this code works

working code

submission : 272991530

  • Проголосовать: нравится
  • 0
  • Проголосовать: не нравится

»
5 месяцев назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится
  • »
    »
    5 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Then what is the solution, how to avoid such errors.

    I am really curious about how the second approach avoids floating point errors.

    • »
      »
      »
      5 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      I don't trust FP in this problem either. I'd rather do a full integer-based solution.

      For this one, the eps used in AC solution helped a little bit in circumventing. TL;DR there might be cases where the "equal" comparison for FP numbers aren't accurate, somehow making two identical number having slight errors (turning $$$0$$$ into $$$10^{-15}$$$ or something that similarly low, pushing ceil to $$$1$$$). eps sets a threshold for ignored error.