Блог пользователя L_Wave

Автор L_Wave, история, 2 месяца назад, По-английски

Let $$$m$$$ be an arbitrary positive integer. We construct an array $$${a}$$$ where $$$\forall n\in\mathbb{N}_+,\sum_{k\mid n}a_k=m^n$$$. Please prove: $$$\forall n\in\mathbb{N}_+,n\mid a_n$$$.

My first thought is to use Mobius inversion to translate the definition of $$${a}$$$ into $$$a_n=\sum_{k\mid n}m^k\mu(\frac nk)$$$. Then I tried to prove: Let $$$n=p_1^{c_1}p_2^{c^2}\cdots p_k^{c_k}$$$ be the unique factorization of $$$n$$$, for all $$$1\le i\le k$$$ the condition $$$p_i^{c_i}\mid a_n$$$ holds. But I made a little mistake. I forgot the other powers of $$$p_i$$$.

So who can prove this statement? Please comment here, thanks!

  • Проголосовать: нравится
  • +41
  • Проголосовать: не нравится

»
2 месяца назад, # |
  Проголосовать: нравится +4 Проголосовать: не нравится

Is there an English translation?

  • »
    »
    2 месяца назад, # ^ |
      Проголосовать: нравится +8 Проголосовать: не нравится

    $$$\forall n\in\mathbb{N}_+,\sum_{k\mid n}a_k=m^n$$$: For every positive integer $$$n$$$, the sum of $$$a_k$$$ where $$$k$$$ is a divisor of $$$n$$$ is $$$m^n$$$.

    • »
      »
      »
      2 месяца назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Oh ok, I see. So if $$$m = 1$$$, the array would be like $$$[1, 0, 0, 0, 0, 0, \cdots]$$$. I'm not sure if this is helpful, but I think that that looks pretty similar to the mobius function.

»
2 месяца назад, # |
Rev. 2   Проголосовать: нравится +60 Проголосовать: не нравится

$$$a_k$$$ is exactly the numbers of arrays $$$b_1,b_2,\cdots,b_k\in [1,m]\cap \mathbb Z$$$ where no $$$d|k,d<k$$$ is a period of $$$b$$$, and is therefore a multiple of $$$k$$$.