someone can help me to solve this problem?
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Название |
---|
You for solve this problem should know algorithm ("segment tree") :))
You know?
segment tree isn't algorithm and i know this data structure
ooooo Yes this data structure
this problem is classic problem segment tree
if you know segment tree so you can solve this problem
Автокомментарий: текст был переведен пользователем Outsider (оригинальная версия, переведенная версия, сравнить).
I think it is Mo algorithm ( sqrt decomposition ). You can read about it ;)
You can solve this problem using segment tree in witch every node is a multiset. Then the build complexity will be O(Nlog(N)), because the tree is balanced. And each query and update will be done in O(log^2(N)).
Please, describe me how you will find sum for theravada second query ? I solve some problems with segment tree, but I never solve something like it.
About my solution, now I am not pretty sure( because we have update), but some sqrt decompostion should be good.