Hello, I have a problem need to solve:
S(n) = 1^k + 2^k +..+n^k
input: n<=10^9, k<=40
output: S(n)%(10^9+7).
One more issue:
how to calculate ((n^k)/x)%p which very big n and k.
Thank for helping me.
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 160 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | Dominater069 | 154 |
8 | awoo | 154 |
10 | luogu_official | 150 |
Hello, I have a problem need to solve:
S(n) = 1^k + 2^k +..+n^k
input: n<=10^9, k<=40
output: S(n)%(10^9+7).
One more issue:
how to calculate ((n^k)/x)%p which very big n and k.
Thank for helping me.
Название |
---|
See here for finding S(n). ((n^k)/x)%p = ((n^k)%(x*p))/x. Use binary exponentiation to evaluate (n^k)%(x*p).
Thanks you
Easy to prove that the answer is a polynomial with deg ≤ k + 1. So you can find its coefficients using Gaussian elimination or any other way to interpolate it.
Easy to prove that the answer is a polynomial with deg ≤ k + 1.
how?
For instance, using recurrent equation for sum of k-th powers through previous powers sums (see the link above).
Check Div1-500 here.