How can this problem be solved with persistent segment tree??Although there are other methods to solve this but i am interested in persistent segment tree!!
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
How can this problem be solved with persistent segment tree??Although there are other methods to solve this but i am interested in persistent segment tree!!
Name |
---|
Since Ai <= 10**5, you could maintain a segment tree for each i such that it contains 1 in its jth position if arr[j] >= i.
You could form segment tree for ith index from i+1 index easily. Overall there would be total n updates. Hence O(nlogn) For querying start at root of Lth index and apply binary search to get position of kth value. O(qlogn)
AC code here