Блог пользователя Snezhok

Автор Snezhok, история, 7 лет назад, По-русски
Tutorial is loading...
Tutorial is loading...
Tutorial is loading...
Tutorial is loading...
Tutorial is loading...
Разбор задач Codeforces Round 450 (Div. 2)
  • Проголосовать: нравится
  • +68
  • Проголосовать: не нравится

»
7 лет назад, # |
  Проголосовать: нравится +37 Проголосовать: не нравится

How do you find ?

  • »
    »
    7 лет назад, # ^ |
    Rev. 2   Проголосовать: нравится +16 Проголосовать: не нравится

    For those who upvoted my question above :)

    Say, a sequence of numbers sum to t. Out of all such sequences, what can be the gcd of all numbers in the sequence? It has to be a divisor of t. Let it be d = gcd(a1, ..., ak). Because all ai is divisible by d, thus the sum is also divisible by d, where the sum is t.

    Hope this helps..

    • »
      »
      »
      7 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      in the formula we can g value directly, but f value need other f value.

      but the accepted code seems like calculating f(t) with this:f(t)=2^(t-1)-sigma(2,ti)[g(t/ti)].

      such as the #1 and #2 on the standing list

      can u explain that......?

      • »
        »
        »
        »
        7 лет назад, # ^ |
          Проголосовать: нравится +1 Проголосовать: не нравится

        Say t has divisors 1 = t1 < t2 < ... < tk = t. Then the formula for g will be as follows: . Here the first component of the sum is the actually f(t) itself, as t1 = 1 . Hence, we get .

    • »
      »
      »
      7 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      ai mustn't divide t, for example 2 + 3 = 5 but 2 doesn't divide 5 All what matters is that sum(ai)=t => d*sum(ai/d) = t => there is a k so that d * k = t => d|t

»
7 лет назад, # |
  Проголосовать: нравится +13 Проголосовать: не нравится

No need for set in problem C. You should only keep largest element and second largest element. If we are currently at Ai, and if largest element before Ai is > Ai, second largest is < Ai, then that element can become record by removing largest element, so increase cnt[ A_largest_before_i ]. array cnt tells the change when we remove that element. It is important to set cnt[ Ai ] to -1 before algorithm if Ai is initial record, and later it may be increased. We set it to -1 because removing it surely removes one record, and later we will increase it if it also "creates" other records.

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится +1 Проголосовать: не нравится

    Hi I had thought of something like this but have a doubt.

    Can you please answer the query over here in this comment?

    Thanks!

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится +1 Проголосовать: не нравится

    Oh, your solution sounds exactly like one found by me! I've solved the problem in C language, but after the contest has already ended... (((

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    what will be output for following test case? and how ? please reply 5 elements : 4 3 5 1 2

    • »
      »
      »
      7 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      See my second submission to this problem for a solution following this format. We first get r[] = {1,0,1,0,0} and initialize x[i] = {-1,0,-1,0,0}. We loop through a[] and keep track of max and max2, indices for the 1st and 2nd largest term so far. We know that if a[max]>a[i]>a[max2], that's another "contribution" for max so x[max]++.

      The only x[max]++ here happens at i = 1, x[0]++. After the loop, you get x[i] = {0, 0, -1, 0, 0}, so we find the smallest a[i] with x[i] = 0 -> 1.

  • »
    »
    5 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    hello,i saw your code and ran it for the test case 5 1 2 3 5 4 it gave the answer 5 while even if we remove 4 the number of records is going to be the same.Can you please explain where am i mistaken?

»
7 лет назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

I found g(t) = 2t - 1 in a different way. Can you elaborate a bit more on this: represent all integers in the sequence in unary system with zeros, and split them with t - 1 ones.

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    It's a bug. Correct explanation should be: decrease by one all integers in the sequence, represent them in unary system with zeros, and split them with ones.

    • »
      »
      »
      7 лет назад, # ^ |
        Проголосовать: нравится +1 Проголосовать: не нравится

      How does this give the answer (2t - 1) directly(!)? a bit more clarification..

      I summed up the number of solutions to the equations like: , which has Cn - 1k - 1 number of solutions. Then the answer is .

      • »
        »
        »
        »
        7 лет назад, # ^ |
        Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

        It was an attempt to construct a bijection between the bit representation and the sequence. Imagine, that you are reading bit representation and constructing suitable sequence. If you meet 0, you should add 1 to the previous member of the sequence, else you should add 1 to the previous member and start next member with 1.

  • »
    »
    7 лет назад, # ^ |
    Rev. 2   Проголосовать: нравится +44 Проголосовать: не нравится

    You can think of it like this way. We have n ones in a lines. Let's say our n = 5. This will correspond to 11111. Now, there are are 4 positions in between those "ones" (more precisely, consecutive ones) where we can place a barrier. What I mean by barrier is like this (11|11|1) where | represents a barrier, hence our paritition will be (2, 2, 1) for 5 or we can place our barriers like this (1|111|1) where our partition will be (1, 3, 1) or like this (111|1|1) which corresponds to another valid partition (3, 1, 1). Hence, we can say that at each of 4 positions, we can choose to place a barrier on it or not and it will always produce a unique partition. Therefore, we have 2(5 - 1) = 24 choices (2 because we can have a barrier in between consecutive ones or not). Hence, if we have n ones, we'll have n - 1 barriers to place, so we'll have 2n - 1 choices to make. Interstingly, this technique can be used to prove some more important problems, like proving "dividing n among k groups where each group gets atleast 1 which we can say selecting by k - 1 barriers out of n - 1 barriers". I hope you understand it now.

    • »
      »
      »
      7 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Beautiful!!

      My solution above actually uses this technique, but for a fixed k, therefore I was summing up for all possible values of k. I was just wondering how to find it at one step! And your clarification made it very easy, thanks!

    • »
      »
      »
      7 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Thank you for your nice explanation. But I can't figure out a situation. The editorial states that "Let's denote the number of sequences such that their sum is t as g(t). Then g(t) is 2^(t - 1): represent all integers in the sequence in unary system with zeros, and split them with t - 1 ones".

      But let t=3. Then g(3)=2^(3-1) = 2^2 = 4. But we can make 3 sequence whose sum is equals 3. they are-

      1+1+1=3 and 2+1=3 and 3=3

      Then how g(3)=4 ? Please help me to figure out this situation. Thanks in advance.

»
7 лет назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Hello, thank you for the contest!

I think in problem D there were some submissions that shouldn't pass but before of the tests they did. At least this one: http://mirror.codeforces.com/contest/900/submission/33138278 The case x=1, y=999999527 (which is prime), it lasts like 15 seconds.

I am not asking to reevaluate of course, just bringing it to your attention.

Thanks again for the contest

»
7 лет назад, # |
Rev. 2   Проголосовать: нравится +1 Проголосовать: не нравится

What is the maximum answer for C? I iterated only 1000 times. That was enough. But i'm curious, is my approach correct? I know that period's length can be at most b — 1.

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I didn't understand D. Can someone please explain it in more detail. Especially, the part on, how we calculate the value of g(t). Also, how f(t) is obtained from g(t) then.

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится +16 Проголосовать: не нравится

    That's how I understand it.

    First if x does not divide y, then the answer is zero, since the gcd has to divide every number, it must divide the sum.

    Now to the case where x divides y, we need to calculate all sequences that sum to y / x with gcd 1, why? Because any valid sequence can be transformed to such form if you take the gcd as a common factor. Let's say a1 + a2 + a3 ...an = y, and the gcd of a1,a2,a3.. an is g, then we can write it as g*b1 + g*b2 + g*b3...g*bn = y, which is the same as g*(b1+b2 + b3 +..bn) = y, now divide by g, and you get b1 +b2 +b3 + b4...bn = y/g.

    Now to count the sequences of sum X and gcd 1, you start by saying that all sequences are valid, so you add all sequences that sum to X ( To get that number, check the comment by I_Love_Equinox, he explains it perfectly, or google stars and bars theorm).

    After you do so, you need to subtract bad sequences with gcd > 1 and sum equal to y / x, the gcd must divide the sum again (y/x) , so you re-enumerate the process by finding numbers that sum to (y/x)/g, where g divides y /x. You keep doing so recursively.

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Maybe I am little shame now, but can someone explane me proof for size of period in the second task and explanation how it is connected with pigeonhole principle ?

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится +44 Проголосовать: не нравится

    Think it like this way. How do we actually calculate where a < b. We multiply a = a * 10 until a ≥ b, then in quotient of the division, is appended and we calculate the new division for a%b. For example, . We do a = 5 * 10 = 50. We append to our quotient and calculate 50 - 49 = 1. This 50 - 49 is nothing but 50%7 = 1 and hence we'll now start off the new step of the division from here (i.e. again multiply 1 with 10 and our new quotient will be 0.71...). So, if two remainders in the process are same, the whole process will repeat, and consequently the period will repeat. Since, there are b distinct remainders and will always be  ≤ 9, hence, due to pigeon hole principle, atleast one value of remainder will repeat and period will be

»
7 лет назад, # |
  Проголосовать: нравится +11 Проголосовать: не нравится

for D : A000740 , mu

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How to solve E?

  • »
    »
    7 лет назад, # ^ |
    Rev. 2   Проголосовать: нравится +4 Проголосовать: не нравится

    First of all, we need find if is possible make a string t starting of position i.

    Lets make a dp only for odd positions. This dp[position][letter] answer the longest string can be create, just looking odd positions, starting with the letter in second state and only using this letter or '?'. Do the same thing for even positions.

    There are in string t exactly ceil(|t| / 2) a's and floor(|t| / 2) b's (|t| is the length of string). So, to check if string t exists starting of position i, you can just look the previous dp check dp[i]['a'] >= ceil(|t| / 2) and dp[i]['b'] >= floor(|t| / 2)

    The cost of make this string is exatly the number of '?' between indexes i and i + |t| — 1.

    Now, we know if is possible to make string t starting to index i and which is the cost to do that. So, we can write another dp to solve the final part of the exercise.

    If is possible make a string t starting on position i

    dp[i + |t|] = best(dp[0 .. i]) + costStartingPosition(i);

    In this case, dp[x] is a pair (maximum number of words, minimum cost).

    So, the cost of make a string finishing on position i + |t| is the best cost between indexes [0 .. i] plus the cost of starting a word on position i.

    This best(dp[0 .. i]) can be implemented with a segtree dp or just mantain the best dp of the indexes [0 .. i] in linear time.

    Solution: http://mirror.codeforces.com/contest/900/submission/33138394

  • »
    »
    7 лет назад, # ^ |
    Rev. 6   Проголосовать: нравится 0 Проголосовать: не нравится

    As mentioned already in some comments in the discussion, fft could be used for general strings t.

    For this one I did the following. First for each position pos find the maximum prefix of the word t that can be built, which ends in pos and count the cost of building it.

    There are few cases: if pos has '?', you can extend the previous prefix if the previous prefix had length < m. If not you can either construct the prefix of length m (if you had at least m-1 continuos positions with '?' before pos) or m-1 (if there is at least one letter, it uniquely determines the prefix).

    If pos has a letter you can try to extend it, if the parity of the previous prefix is ok (even for 'a', odd for 'b'). Again you will be able to extend it, if the length was < m, if not, you will be able to get m-1.

    Whenever you add '?' or move the beginning and get rid of initial '?' update cost correctly.

    The last case is when you can't extend previous prefix, which means that you have a letter at pos. In that case try to get as many continuous '?' as possible, ending at pos — 1 and create new prefix.

    Once you computed the values above you just need to run simple dp to count maximum number of disjoint occurences and minimum cost of it.

    Code for reference.

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Thus we need for compute only f(ti) for every ti|t.

What does this mean?

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I think the B problem had weak test cases. I just found the first 1000 digits of the quotient and checked whether the digit was there or not. I got AC :)

»
7 лет назад, # |
Rev. 4   Проголосовать: нравится +15 Проголосовать: не нравится

UPD. Прочитал разбор, там то же самое, только сет вместо фенвика.

900C - Уберите лишнего можно ещё решать так:

  1. Посчитаем максимумы на префиксах и запомним их индексы, maxIdx[i] — индекс максимума на префиксе i, а также посчитаем records — исходное число рекордов и record[i] — является ли элемент a[i] рекордом.

  2. Будем считать величину obstacle[i] — сколько появится новых рекордов, если убрать a[i]. Заведем фенвика на сумму, будем идти слева направо, после обработки a[i] добавляя 1 в позицию a[i] в фенвике. Если сумма на суффиксе [a[i], n] равна 1, то a[i] может стать рекордом и для этого нужно убрать элемент maxIdx[i-1] (или maxIdx[i], т.к. они равны). Таким образом, сделаем ++obstacle[maxIdx[i - 1]]

  3. Теперь ответ считается, как максимум records - record[i] + obstacle[i] (в случае равенства выбираем меньший)

Код: 33146151

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I think I have a kind of cute solution for B — I just performed the division until the point I know the digits will repeat. My solution can be found here

  • »
    »
    7 лет назад, # ^ |
    Rev. 5   Проголосовать: нравится 0 Проголосовать: не нравится

    A similar algorithm was used using C++ STL sets to find the position of the digit c in problem 900B - Position in Fraction in the decimal (base-10) representation of the fraction a/b during the contest, where items of the set are distinct co-prime pairs <a,b>, 1 <= a < b <= N, where N = 100000 generated using long division of co-prime pairs computed using the __gcd function. This could lead to faster execution time when b is non-prime.

    33128670

    The aforementioned algorithm was extended as follows using C++ STL bitset and template for more efficiency, and to be used for any Radix and any N rather than 10 and 100000, respectively.

    33151934

»
7 лет назад, # |
  Проголосовать: нравится +16 Проголосовать: не нравится

Wasn't E significantly easier than D, or it's just me? I would give E the same difficulty as C.

»
7 лет назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

Can anyone explain how to solve D using Mobius Function ?

  • »
    »
    7 лет назад, # ^ |
    Rev. 2   Проголосовать: нравится +2 Проголосовать: не нравится

    You should use Mobius inversion formula to solve D. At first we have such expression: . If we use Mobius inversion formula, we are getting a new expression to calculate f(t): . Sorry for my bad English.

    • »
      »
      »
      7 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      can you explain it with an example?

      • »
        »
        »
        »
        7 лет назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Sorry, what exactly do you want me to explain? Mobius inversion formula in general or its application for solving this problem?

        • »
          »
          »
          »
          »
          7 лет назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          Mobius inversion application to solve this problem.

          • »
            »
            »
            »
            »
            »
            7 лет назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится

            Well, Snezhok in his editorial said that if y is divisible by x then the answer is . He also said that g(t) = 2t - 1 and , where ti are divisors of t. So we know how to calculate g(t) (for example using binpow), but we need to calculate f(t). Using Mobius inversion formula, we are getting a new expression: . Ok, now we can calculate . How to calculate μ(ti)? This solution is enough fast so I didn't think about it too much. To calculate μ(ti) we need know its prime divisors. But each divisor of ti is a divisor of t too. So we can precalc prime divisors of t and use them to calculate μ(ti). Sorry for my English :)

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Auto comment: topic has been updated by Snezhok (previous revision, new revision, compare).

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Автокомментарий: текст был обновлен пользователем Snezhok (предыдущая версия, новая версия, сравнить).

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

For Problem E,if both string S and string T is given and the length of them is between 1 and 10^5.Does there exist a solution that works in O(length) time or O(length log length) time?

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Editorial solution has O(n) time complexity where n is length of s.

    But if string t has an arbitrary form it is possible to use FFT algorithm to find positions where occurences can start. So time comlexity will be O(length log length) due to FFT.

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

"We know that the number of divisors of t is not greater than ". How do you prove this ?

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится +5 Проголосовать: не нравится

    e-maxx in his post said that he had found such an interesting fact here: "for all ε > 0, d(n) = o(nε)". He also gave other estimates but he said that on practice we use numbers less than 1018 so it's easier to use an estimate that is more rough than others.

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How to solve C — Remove Extra One if all elements are not distinct, that is the permutation of n integers p1, p2, ..., p_n (1 ≤ pi ≤ n) contains some repeated integers?

Thanks.

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Permutation can't contain repeated integers by its definition. A permutation is a rearrangement of the elements of an ordered list S into a one-to-one correspondence with S itself. You can read about it here for example.

    • »
      »
      »
      7 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Ok,consider sequence but not a permutation.

      • »
        »
        »
        »
        7 лет назад, # ^ |
        Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

        For each 1 ≤ i ≤ n we can calculate how many records will there be in sequence if we remove a[i]. We can use std::set or std::map for it. If I'm not mistaken, this solution is right.

        • »
          »
          »
          »
          »
          7 лет назад, # ^ |
            Проголосовать: нравится +5 Проголосовать: не нравится

          Thanks...Just we need to keep the count of how many times you have seen it before which can be done using std::map or std::multiset... I was thinking to reduce further because it doesn't matter if we remove the next occurrence of an element

          .

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Not Able to understand C Editorial Help

  • »
    »
    7 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    The problem states that it would provide you a permutation of 1 to n Find out a single integer 'x' from the given permutation; which has the longest increasing subsequence to its right so that every number on that increasing subsequence is greater than all the numbers left to 'x' and every number on that increasing subsequence is strictly less than 'x'. If there are more than 1 such numbers with equal length of increasing subsequence at its right, pick the minimum one.

    This is how I understood the problem and solved it.

»
7 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Very bad editorial for novice programmers like me. 900B is not explained at all. How is it to be done? No code, no algorithm, nothing mentioned. Just Wikipedia links.

Please write editorials which can be useful for 'Pupils'