After applying Gaussian algorithm on a array how could I restore those numbers of which XOR is maximum?
Let a[3] = {11, 5, 9} If I apply Gaussian algorithm we will find maximum xor is 14.And used numbers are 11, 5.How to restore this 11, 5?
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
After applying Gaussian algorithm on a array how could I restore those numbers of which XOR is maximum?
Let a[3] = {11, 5, 9} If I apply Gaussian algorithm we will find maximum xor is 14.And used numbers are 11, 5.How to restore this 11, 5?
Name |
---|
if you have additional time (where c is the max value) it is easy to restore. Here is a slow implementation, which can be improved to if you replace the bitset and just store by wich indices the value is composed (there are always atmost bits set).
Thanks man. I got. :)
I did a python 2 implementation to show one way of doing it, in , where m is the number of linear independent binary vectors in A. Note that so it runs really quick, also note that nothing in my implementation is python specific I just really like how pseudo code like python is. The essential stuff lies in the two functions, the rest just shows how to use the functions.
The output is
I didn't get anything. I have a little knowledge of python. But thanks.You tried to help me.