Блог пользователя awoo

Автор awoo, история, 6 лет назад, По-русски

1155A - Reverse a Substring

Разбор
Решение (Vovuh)

1155B - Game with Telephone Numbers

Разбор
Решение (Roms)

1155C - Alarm Clocks Everywhere

Разбор
Решение (Vovuh)

1155D - Beautiful Array

Разбор
Решение (PikMike)

1155E - Guess the Root

Разбор
Решение (adedalic)

1155F - Delivery Oligopoly

Разбор
Решение (BledDest)
  • Проголосовать: нравится
  • +78
  • Проголосовать: не нравится

»
6 лет назад, # |
  Проголосовать: нравится +105 Проголосовать: не нравится

My approach for problem D is quite different. I hope it would be easy to understand.

At first, I build 2 arrays Left(i) and Right(j) that return the maximum sum of a subarray ending at i with Left(i) and starting at j with Right(j). I also have array Sum(i) is sum of all elements from 1 to i.

When we multiply the subarray (l..r), the result in current case is

Left(l-1) + x * (Sum(r) - Sum(l-1)) + Right(r+1).

We can rewrite it by

(Right(r+1) + x * Sum(r)) + (Left(l-1) - x * Sum(l-1)).

With this formula, my solution is a loop for i from 1 to n, take i as the right most of the multiply subarray, get the best value of the left most to update the answer.

See my submission for more details: 53150702

»
6 лет назад, # |
  Проголосовать: нравится -65 Проголосовать: не нравится

why is E so easy

»
6 лет назад, # |
  Проголосовать: нравится +7 Проголосовать: не нравится

I can't get my head around as to why greedy won't work for D. If x is non positive, why can't we just find the maximum negative sum and multiply it by x? My code doesn't pass, so it is definitely wrong, but I don't know why.

  • »
    »
    6 лет назад, # ^ |
    Rev. 2   Проголосовать: нравится +9 Проголосовать: не нравится

    Edit: my bad, I gave a wrong example. See the responses.

    • »
      »
      »
      6 лет назад, # ^ |
      Rev. 2   Проголосовать: нравится +5 Проголосовать: не нравится

      I think your example is wrong cause multiplying x with -2 also gives 2+10-1+10 = 21.

      One example can be :

      7 -1

      -20 21 -15 10 -10 20 10.

      Here -20 is the largest non-positive segment but it gives 20+21-15+10-10+20+10 = 56.

      But multiplying -15 by -1 gives 21+15+10-10+20+10 = 66

    • »
      »
      »
      6 лет назад, # ^ |
        Проголосовать: нравится +5 Проголосовать: не нравится

      In your example, you'd get 21 in either case. What you wanted to say was:

      4 -1
      -5 10 -3 10
      
»
6 лет назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

Is there another way to get the polynomial on problem E? ( Not using Gaussian elimination )

»
6 лет назад, # |
  Проголосовать: нравится +14 Проголосовать: не нравится

I have an approach for D that is more in the 'style' of Kadane's algorithm. The beautiful part of the array consists of 3 "segments", the 1 part, the X part, and the 1 part again.

Like Kadane's, we loop through each x in the array, maintaining bestK = the largest value of K segments ending in the current x value.

def solve(N, X, A):
    ans = best1 = best2 = best3 = 0
    for a in A:
        best3 = max(0, a, best1 + a, best2 + a, best3 + a)
        best2 = max(0, X*a, best1 + X*a, best2 + X*a)
        best1 = max(0, a, best1 + a)
        ans = max(ans, best1, best2, best3)
    return ans
»
6 лет назад, # |
  Проголосовать: нравится +10 Проголосовать: не нравится

For problem B, wasn't it enough to simply ignore the last 10 characters of the string and check whether more than half of the remaining characters are equal to '8'?

  • »
    »
    6 лет назад, # ^ |
    Rev. 3   Проголосовать: нравится +5 Проголосовать: не нравится

    Yes. If the number of 8's is at most (n - 11) / 2 or the number of moves each person gets, Petya can remove all the 8's. The number of digits that are not 8's is n - 10 - numberOf8s, therefore if the number of 8's is greater than (n - 11) / 2 the number of digits that are not 8 will be less than n - 10 - (n - 11) / 2 = (n - 9) / 2, which is at most (n - 11) / 2. So Vasya would be able to remove all the non-8's.

»
6 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can anyone explain editorial's tutorial for problem D in simple and easy way.

»
6 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I honestly don't get why my solution isn't working. I get WA on the 11th test case, but the output seems fine to me. Am I missing something?

https://mirror.codeforces.com/contest/1155/submission/53204105

»
6 лет назад, # |
  Проголосовать: нравится +6 Проголосовать: не нравится

In problem E, how can we be sure that the value of f(xi) that we use to interpolate the polynomial is actually the value of the polynomial or less than the actual value because of MOD 1e6 + 3

For example, if the polynomial is 1 + (1e6+1)x + x^2, f(0) = 1, f1(1) = 1e6+2, f(2) = 2e6 + 7 MOD 1e6 + 3 = 1. Now the polynomial we interpret will be wrong.

  • »
    »
    6 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Isn't f(1) = 1e6+3 = 0?

    • »
      »
      »
      6 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      my bad. But the point stands? The function could be changed.

      • »
        »
        »
        »
        6 лет назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        If you do the interpolation with the correct values you'll end up with the correct polynomial and I believe that it will always be correct because of the way modular arithmetic works.

        • »
          »
          »
          »
          »
          6 лет назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          So assume that the question said instead of 11 degrees the polynomial is 2 degrees only. Then the polynomial interpolated from above info is 1 — 2x + x^2, again obviously wrong. Maybe, it will give the correct value of zero when taken MOD 1e6+3 but I don't find in intuitively clear.

          • »
            »
            »
            »
            »
            »
            6 лет назад, # ^ |
              Проголосовать: нравится +3 Проголосовать: не нравится

            -2 is congruent to 1e6 + 1 mod 1e6 + 3, so 1 — 2x + x^2 is congruent to 1 + (1e6 + 1)x + x^2 mod 1e6 + 3 and the interpolated polynomial is correct.

»
6 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Another approach for problem D

We find the Best subarray ending at ith index and at every index maintain three possible sums 1) x has not yet been used previously nor being used by this element 2) x is being used by this element 3) x was used by some prev segment and hence this element cannot use x

Transitions for calculating ith index results

1) is simple to extend using prev index's result

2) either extend prev index result 1) or 2) should multiply a[i] by x

3) can extend 2) or 3) but should not multiply a[i] by x

https://mirror.codeforces.com/contest/1155/submission/53223589

»
6 лет назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

My "solution" for F: first use dp to calculate for each subset of vertices and each pair of vertices if there is a path between those vertices passing through exactly gives subset of vertices, exactly once. From this we can get for each subset if there is a cycle passing through each of them exactly once. Iterate over all subsets and identify those, which have a Hamiltonian cycle, but none of their proper supersets does. Now while we have time left pick a random of those subsets, put all edges from the cycle to the graph, random_shuffle all other edges, add them in order and if this edge is not redundant (i.e their endpoints aren't already in the same biconnected componend) add it. After each iteration check if current solution is better, than best found so far. If it is store it. I saw some other people getting accepted with similar approach. Any idea how to defeat it? 53200092

»
6 лет назад, # |
Rev. 3   Проголосовать: нравится +15 Проголосовать: не нравится

I've solved problem F with a random way. We can delete some edges in E, and then run Tarjan algorithm to find all strongly connected components. If the graph is bi-connected, the all nodes are supposed to form a single strongly connected component. The number of deletion strategy is 2^|E|, it's too large to try all possible strategies. But we can turn to a greedy way, iterate over each edge, if it's redundant, just delete it. You need run the process several times to get a satisfying result, before each process, shuffle the E at first.

  • »
    »
    6 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    That's quite unfortunate.

    I think if the edges were weighted the model solution would look the same, but any randomized shit would be in trouble because e.g. for random weights it's very likely that optimal solution is unique, or the assertion I used that if for some set of vertices with Hamiltonian cycle there is its superset which also has a Hamiltonian cycle is no longer true.

  • »
    »
    5 лет назад, # ^ |
    Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

    Can you share your submission?...@dalt

»
6 лет назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

I find a way using greedy and segment tree to solve D You can see my submission 53466247.awoo

  • »
    »
    6 лет назад, # ^ |
      Проголосовать: нравится +2 Проголосовать: не нравится

    Can you explain your solution?

    • »
      »
      »
      6 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Let we make l the start of the range we multiple x.And then we need to find best r to be the end of the range we multiple x.The answer of [l,r] to multiple x is left[l]+sum(l,r)*x+right[r].Because the left[l] is fixed, we only need to consider sum(l,r)*x+right[r].Then we can use a segment tree to find the best r quickly.

»
6 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Problem E: What would be the problem if the limit was not a prime?? Can anyone explain??

  • »
    »
    6 лет назад, # ^ |
      Проголосовать: нравится +1 Проголосовать: не нравится

    In this problem, we use Gaussian Elimination to solve a modular SLAE (System of Linear Algebraic Equations). In Gaussian Elimination, some steps involve division operations. So, the division steps, in this case, involve finding out the multiplicative inverse of the denominator and multiplying the numerator by that. The multiplicative inverses may not exist if the module is not prime and in that case, we will not be able to use Gaussian Elimination to solve the problem.

»
6 лет назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Where can I read about Gaussian elimination method?

  • »
    »
    5 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    change ur profile pic i thought there is something on my screen so tried to rub it off

»
6 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

For problem D can someone explain me what ecnerwala did to solve it. His code looks quite simple but I am unable to understand it :( . Here's the link to his solution 53141642

  • »
    »
    5 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Okay, so this is what I understood:

    A number can be in these 5 states:

    1. Not included in the range, and is to the left of the included range
    2. Included in the range, but not multiplied by x, before the range that is multiplied by x
    3. Included in the range, and multiplied by x
    4. Included in the range, but not multiplied by x, after the range that is multiplied by x
    5. Not included in the range, and is to the right of the included range.

    This gives you good information about the first loop.

    The second loop is about saying "the maximum sum, doing whatever, before the current element".

    So for (int z = 0; z+1 < 5; z++) dp[z+1] = max(dp[z+1], dp[z]); makes dp useful for the next for (int z = 0; z < 5; z++) dp[z] += weights[z] * v; Where, we calculate: dp[i] = dp[i](The max until i, by including, not including, multiplying etc) + weights[i]*v(the weight according to state) ;

  • »
    »
    5 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    that is damn cool

»
6 лет назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

what is wrong in this code 1155D

include<bits/stdc++.h>

using namespace std;

define ll long long

define mod 1000000007

define pii pair<ll,ll>

define mp make_pair

define se second

define fi first

define pb push_back

ll max(ll a,ll b) { if(a>b) return a; return b;

}

int main() { ll n,x; cin>>n>>x; ll a[10000007]={0}; for(ll i=0;i<n;i++) { cin>>a[i];

}
ll dp[100005][3];
dp[0][0]=max(a[0],0);
dp[0][1]=max(a[0]*x,0);
dp[0][2]=max(a[0],0);
for(ll i=1;i<n;i++)
{
    dp[i][0]=max(0,dp[i-1][0]+a[i]);
    dp[i][0]=max(dp[i][0],dp[i][2]+a[i]);
    dp[i][2]=max(dp[i-1][1]+a[i],dp[i][0]);
    dp[i][2]=max(dp[i-1][2]+a[i],dp[i][2]);
    dp[i][2]=max(0,dp[i][2]);

    dp[i][1]=max(dp[i-1][0]+a[i]*x,dp[i-1][1]+a[i]*x);
    dp[i][1]=max(0,dp[i][1]);
}
ll maxi=0;
for(ll i=0;i<n;i++)
{
    for(ll j=0;j<3;j++)
    {
    // cout<<dp[i][j]<<" ";
    if(maxi<dp[i][j])
    maxi=dp[i][j];
    }
//  cout<<endl;
}

cout<<maxi;

}

»
6 лет назад, # |
Rev. 2   Проголосовать: нравится +3 Проголосовать: не нравится

1155D - Beautiful Array — My solution is similar to alexwice and arajatchauhan813, you just have a dp table of n * 3 in which you have:

dp[i][1]:the maximum sum without multiplying until i

dp[i][2]:the maximum sum up to i having already multiplied and without multiplying from i

dp[i][3]:the maximum sum up i multiplying a piece that ends in i

Then :

    for(int i=0;i<n;i++){

        dp[i][1]=max(0ll,arr[i]);

        dp[i][2]=max(0ll,arr[i]);

        dp[i][3]=max(0ll,arr[i]*x);

        if(i==0)continue;

        dp[i][1]=max({ dp[i][1] , arr[i]+dp[i-1][1] });

        dp[i][2]=max({ dp[i][2] , arr[i]+dp[i-1][2] , arr[i]+dp[i-1][3]});

        dp[i][3]=max({ dp[i][3] , dp[i-1][3]+(arr[i]*x) , dp[i-1][1]+(arr[i]*x)});

    }

So you only need visit the table and find the greatest solution

There is my solution 55211386