Блог пользователя rr459595

Автор rr459595, история, 5 лет назад, По-английски

I solved this problem on hackerrank ( https://www.hackerrank.com/contests/dcl2k15/challenges/mice-v1 ) based on greedy approach. I am not able to understand the proof of the greedy approach.

The proof says max( |a1-b1| , |a2-b2| ) <= max( |a1-b2|, |a2-b1| ) for a1<a2 and b1<b2. Can someone help me in proving the inequality?

  • Проголосовать: нравится
  • +3
  • Проголосовать: не нравится

»
5 лет назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

How can you say you solved it if you don't understand the proof?

You can assume without loss of generality, that $$$a_1 \le b_1$$$. Then you can check three cases: either $$$a_2 \le b_1$$$ or $$$b_1 \le a_2 \le b_2$$$ or $$$b_2 \le a_2$$$. Prove the inequality for all three cases separately. It should be pretty mechanical.