Hello, how can Kruskal's algorithm be modified to run in O(n^2) time in a dense graph of n nodes??
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
Name |
---|
This seems well explained and it has cpp code.
Why do you need Kruskal for such a task? Prim have your desired complexity, and is not much harder to implement compare to Kruskal.
I am thinking that since Kruskal is usually faster to implement from scratch compared to Prim, the OP was hoping for an easy modification to Kruskal to achieve O(N^2) time complexity on dense graphs so that he could use it in more contexts during contests.
What does OP mean?
Original poster
It's the same as O(V^2 + E) dijkstra, just linearly search for smallest cost vertex that hasn't been visited yet.
Edit: I meant prim