Given a string S. How many permutations of string s is lexicographically smaller than S . If S = "cda" answer will be 3 . And the strings are {"acd","adc","cad"}.
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
2 | maomao90 | 163 |
4 | atcoder_official | 161 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | nor | 153 |
9 | Dominater069 | 153 |
Given a string S. How many permutations of string s is lexicographically smaller than S . If S = "cda" answer will be 3 . And the strings are {"acd","adc","cad"}.
Название |
---|
Why shouldn't we count
cad
?Fix the longest common prefix and the next character. The rest are free to take whatever value you want. Possibly use the permutation with repetitions formula