Блог пользователя kstheking

Автор kstheking, история, 4 года назад, По-английски

We had this question on our Internship test, and I couldn't figure out how to do it, help please

Given a string s and a number p find number of unique special strings that can be formed using the given string
A special string is a permutation of string made from a subsequence of s, whose sum of ASCII values of its characters is divisible by p
Example: s = "ab", p = "2"
answer = 1
all possible unique strings = "a","b","ab", "ba"
respective sums = 97, 98, 195, 195
reason: since there is only one number (98) which is divisible by 2 so total answer = 1
Constraints: |s| <= 20 and 1 <= p <= 200
print the answer modulo 1000000007

  • Проголосовать: нравится
  • -12
  • Проголосовать: не нравится

»
4 года назад, # |
Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

You can try 3D DP where :
1st state represents the current index of the string
2nd state represents the current sum of ASCII values of the subsequence chosen (It ranges from 122 to 122*n)
3rd state represents the current modulo of the subsequence ASCII sum with p
This should work because the time complexity would be n*(122*n)*p where n is |s|.
UPD : Didn't took care of the unique sunstring thing, Since the string length is <=20, backtracking approach might work out considering all the possibilities of the subsequences.

»
4 года назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

was it on campus or off?? (OFF-TOPIC)

»
4 года назад, # |
  Проголосовать: нравится -10 Проголосовать: не нравится

iterate though all mask from 1 to (1<<n) special string => sum of ascii values of all character in the current mask should be divisible by p(can be checked) unique string => maintain trie or set to check this all possible combination using current mask => let frequency be c1,c2....c26 (assuming alphabet size = 26) ans = (c1+c2+.....)! / c1! * c2 ! ........ c26!

»
4 года назад, # |
  Проголосовать: нравится -13 Проголосовать: не нравится

We can find all 2^n strings and then count sum of ASCII values of character in each string. If sum is divisible by p then add the value of all possible permutation of that string to result. I think this will fit in given TL

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится +19 Проголосовать: не нравится

    Special String formed is permutation of the given string not subsequnce.

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится -7 Проголосовать: не нравится

      Special String is "a permutation of string made from a subsequence of s". So can't we just find find all 2^n strings and then count sum of ASCII values of character in each string and find the number of permutations of this string?

    • »
      »
      »
      4 года назад, # ^ |
      Rev. 2   Проголосовать: нравится +1 Проголосовать: не нравится

      For 'abc' -> 'a', 'b', 'c', 'ab' (permutation -'ba' ), 'bc' (permutation -'cb' ), 'ac' (permutation -'ca' ), 'abc' (permutation -'acb' , 'bca' , 'bac' , 'cab' , 'cba') =3! Am I correct?

»
4 года назад, # |
  Проголосовать: нравится +19 Проголосовать: не нравится

You can store frequency of each character then solve it using dp with 3 states(current character, sum with mod p, current length of the string).

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    can we find permutations of all strings @induber

    then count sum of ASCII values of character in each string. If sum is divisible by p then add the value of all possible permutation of that string to result.

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +15 Проголосовать: не нравится

      Let the string s be of length 20 and having all characters distinct, then there 20! string of length 20, similarly (20C19)*19! of length 19, (20C18)*18! of length 18 and so on, So you can't find all the permutations.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Would you mind elaborating your solution a bit...like the states arent clear to me !!

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    You wouldn't be able to calculate permutations by this process. For that you must also add another parameter that will store modular inverse of products of factorials of the count of each characters we have used so far

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +3 Проголосовать: не нравится

      (For recursive DP)

      During recursion call you can multiply the inverse of factorial of character count and when the recursion ends(current char exceeds 'z') just return length!.

»
4 года назад, # |
Rev. 3   Проголосовать: нравится +1 Проголосовать: не нравится

Try all possible subsequences and if subsequence X is good then add its number of unique permutations (Factorial of length divided by factorials of character's frequencies) to the answer, since its all possible permutation will be the answer as well.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Acha cool so any how we have to generate all possible subsequence and so the TL still remains O(2^N) for N<=20 .

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Generate with bitmasks, it will take around one million operations which is good for one second.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    There can be duplicate also. So we can not directly add |x|!. We have to divide by factorial of count of each character. Like for "aab" it will be 3!/2!

»
4 года назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

Since |s| <= 20, there would be (2^20, i.e. 10^6) combinations, so just brute force every, if any subsequence is divisible by p, do some combinatrics(can be done in O(len)) to find unique permuations.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    it was giving TLE i got 150 marks out of 300 cz i was not able to find the intended backtracking solution :)

»
4 года назад, # |
Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

Just backtrack to find every possible sums. To know unique strings whose sum is divisible by p, you just have to know how many characters it took to build this sum. Like here = "abc" and p=2, we can find 97, 98, 99, 195, 196, 197, 294 and 0 if we backtrack all possible sums. We'll just ignore 0 here. So here 98,196 and 294 are divisible by 2. 98 took 1, 196 took 2 and 294 took 3 characters . So the answer is 1! + 2! + 3! = 9

»
4 года назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится
»
4 года назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Since $$$|S|$$$ is quite small try generating all subsets and find the answer using combinatorics. Let's say current subset chooses some indices where these characters occurs -> "aaaeedd"(their order doesn't matter). If their $$$sum$$$ is divisible by $$$p$$$ then we can permute them in $$$7! / (3! * 2! * 2!)$$$ ways and add them to our answer. take care not to overcount since we need unique strings (e.g. $$$S$$$ = "abab", so choosing subset {0, 1} {0, 3}, {2, 3} are all same and should be counted only once).

PS: the above solution of mine seems correct to me but if you find anything wrong then please let me know. Thanks.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится +8 Проголосовать: не нравится

    How will you prevent over-counting?

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      all we care is about the frequency of elements, so we can use unordered map or map to hash the vector of frequency or even first generate all subsets, store their frequency and use sort + unique. Then we can do the same mentioned above. I bet that i can make it work in one second.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I think this should work...

#include <bits/stdc++.h>
#define int long long
using namespace std;

int mod = 1e9 + 7;
vector<int> fac(22,0), freq(26,0);
int dp[202][202][22];

void precompute()
{
    fac[0] = fac[1] = 1;
    for(int i=2; i<=21; i++)
    {
        fac[i] = (fac[i-1] * i) % mod;
    }
}

int solve(int idx, int sum, int siz, string &s, int &p)
{
    if (idx == s.size()) return 0;
    if (dp[idx][sum][siz] != -1) return dp[idx][sum][siz];
    int ans = solve(idx + 1, sum, siz, s, p) % mod;
    int x = 0;
    for(int i=1; i<=freq[s[idx]- 'a']; i++)
    {
        x = (sum + i * (s[idx]))%p;
        if (x == 0) ans = (ans + ((fac[siz + i] / fac[i]) % mod) + solve(idx + 1, 0, siz + i, s, p) ) % mod;
        else ans = (ans + solve(idx + 1, x, siz + i, s, p)) % mod;
    }
    return dp[idx][sum][siz] = ans % mod;
}

int32_t main()
{
    precompute();
    string s; cin >> s;
    int p; cin >> p;
    memset(dp,-1,sizeof(dp));
    string x;
    for(int i=0; i<s.size(); i++)
    {
        if (freq[s[i] - 'a'] == 0) x.push_back(s[i]);
        freq[s[i] - 'a']++;
    }
    cout << solve(0, 0, 0, x, p);
}