Given an array of length n (n<= 5*10^5) and a number k (k<=10^3), We need to count number of pairs in array whose bitwise and is greater than k. Please share your approach, as I am not able to think the effiecient solution.
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 156 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | nor | 152 |
Given an array of length n (n<= 5*10^5) and a number k (k<=10^3), We need to count number of pairs in array whose bitwise and is greater than k. Please share your approach, as I am not able to think the effiecient solution.
Name |
---|
Isn't this the classic trie data structure problem?
I appreciate at least you tried to share some knowledge on this topic but suppose you asked a problem and someone replied that isn't it a classical FFT problem, same sounds to me but I will be glad if u can share the link if this is a classical trie ds problem because I was not able to find this on google.
There's a very similar problem here and here.