Tutorial uses mobius function to solve this problem. How can we solve this using DP, as I have seen many people use it in their solutions.
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
Tutorial uses mobius function to solve this problem. How can we solve this using DP, as I have seen many people use it in their solutions.
Name |
---|
Let $$$dp[i]$$$ be the number of ways with $$$\gcd = i$$$.
If you calculate it in descending order of $$$i$$$, $$$dp[i] =$$$ (number of ways with values multiples of $$$i$$$) — $$$\sum_{k=2}^{\lfloor m/i \rfloor} dp[ik]$$$.
You can check out similar techniques in this blog.
Got this bit, thanks! I was looking at your solution 125973986 Just wanted to know if you're storing in kn[i][j] : number of ways after i terms and upto jth multiple of g, or something else?
The former.