B. Кратчайший цикл
ограничение по времени на тест
1 секунда
ограничение по памяти на тест
256 мегабайт
ввод
стандартный ввод
вывод
стандартный вывод

Даны $$$n$$$ целых чисел $$$a_1, a_2, \dots, a_n$$$. Рассмотрим граф на $$$n$$$ вершинах, в котором вершины $$$i$$$, $$$j$$$ ($$$i\neq j$$$) соединены тогда и только тогда, когда $$$a_i$$$ И $$$a_j\neq 0$$$, где И обозначает операцию побитового И.

Найдите длину кратчайшего цикла в этом графе, или определите, что в графе нет циклов.

Входные данные

Первая строка содержит одно целое число $$$n$$$ $$$(1 \le n \le 10^5)$$$ — количество чисел.

Вторая строка содержит $$$n$$$ целых чисел $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$).

Выходные данные

Если в графе нет циклов, выведите $$$-1$$$. Иначе выведите длину кратчайшего цикла.

Примеры
Входные данные
4
3 6 28 9
Выходные данные
4
Входные данные
5
5 12 9 16 48
Выходные данные
3
Входные данные
4
1 2 4 8
Выходные данные
-1
Примечание

В первом примере, самым коротким циклом будет $$$(9, 3, 6, 28)$$$.

Во втором примере, самым коротким циклом будет $$$(5, 12, 9)$$$.

В графе нет циклов в третьем примере.