Codeforces Global Round 16 |
---|
Finished |
You are given two positive integers $$$n$$$ and $$$s$$$. Find the maximum possible median of an array of $$$n$$$ non-negative integers (not necessarily distinct), such that the sum of its elements is equal to $$$s$$$.
A median of an array of integers of length $$$m$$$ is the number standing on the $$$\lceil {\frac{m}{2}} \rceil$$$-th (rounding up) position in the non-decreasing ordering of its elements. Positions are numbered starting from $$$1$$$. For example, a median of the array $$$[20,40,20,50,50,30]$$$ is the $$$\lceil \frac{m}{2} \rceil$$$-th element of $$$[20,20,30,40,50,50]$$$, so it is $$$30$$$. There exist other definitions of the median, but in this problem we use the described definition.
The input consists of multiple test cases. The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Description of the test cases follows.
Each test case contains a single line with two integers $$$n$$$ and $$$s$$$ ($$$1 \le n, s \le 10^9$$$) — the length of the array and the required sum of the elements.
For each test case print a single integer — the maximum possible median.
8 1 5 2 5 3 5 2 1 7 17 4 14 1 1000000000 1000000000 1
5 2 2 0 4 4 1000000000 0
Possible arrays for the first three test cases (in each array the median is underlined):
Name |
---|