Дан массив $$$a$$$ длины $$$n$$$, состоящий из неотрицательных целых чисел.
Необходимо вычислить значение $$$\sum_{l=1}^{n} \sum_{r=l}^{n} f(l, r) \cdot (r - l + 1)$$$, где $$$f(l, r)$$$ равно $$$a_l \oplus a_{l+1} \oplus \dots \oplus a_{r-1} \oplus a_r$$$ (символ $$$\oplus$$$ обозначает побитовое исключающее ИЛИ).
Так как ответ может быть очень большим, выведите его по модулю $$$998244353$$$.
Первая строка содержит одно целое число $$$n$$$ ($$$1 \le n \le 3 \cdot 10^5$$$) — длину массива $$$a$$$.
Вторая строка содержит $$$n$$$ целых чисел $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^9)$$$.
Выведите одно целое число — значение $$$\sum_{l=1}^{n} \sum_{r=l}^{n} f(l, r) \cdot (r - l + 1)$$$, взятое по модулю $$$998244353$$$.
3 1 3 2
12
4 39 68 31 80
1337
7 313539461 779847196 221612534 488613315 633203958 394620685 761188160
257421502
В первом примере ответ равен $$$f(1, 1) + 2 \cdot f(1, 2) + 3 \cdot f(1, 3) + f(2, 2) + 2 \cdot f(2, 3) + f(3, 3) = $$$ $$$= 1 + 2 \cdot 2 + 3 \cdot 0 + 3 + 2 \cdot 1 + 2 = 12$$$.
Название |
---|