H. Hard Demon Problem
time limit per test
3.5 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

Swing is opening a pancake factory! A good pancake factory must be good at flattening things, so Swing is going to test his new equipment on 2D matrices.

Swing is given an $$$n \times n$$$ matrix $$$M$$$ containing positive integers. He has $$$q$$$ queries to ask you.

For each query, he gives you four integers $$$x_1$$$, $$$y_1$$$, $$$x_2$$$, $$$y_2$$$ and asks you to flatten the submatrix bounded by $$$(x_1, y_1)$$$ and $$$(x_2, y_2)$$$ into an array $$$A$$$. Formally, $$$A = [M_{(x1,y1)}, M_{(x1,y1+1)}, \ldots, M_{(x1,y2)}, M_{(x1+1,y1)}, M_{(x1+1,y1+1)}, \ldots, M_{(x2,y2)}]$$$.

The following image depicts the flattening of a submatrix bounded by the red dotted lines. The orange arrows denote the direction that the elements of the submatrix are appended to the back of $$$A$$$, and $$$A$$$ is shown at the bottom of the image.

Afterwards, he asks you for the value of $$$\sum_{i=1}^{|A|} A_i \cdot i$$$ (sum of $$$A_i \cdot i$$$ over all $$$i$$$).

Input

The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 10^3$$$) — the number of test cases.

The first line of each test contains two integers $$$n$$$ and $$$q$$$ ($$$1 \leq n \leq 2000, 1 \leq q \leq 10^6$$$) — the length of $$$M$$$ and the number of queries.

The following $$$n$$$ lines contain $$$n$$$ integers each, the $$$i$$$'th of which contains $$$M_{(i,1)}, M_{(i,2)}, \ldots, M_{(i,n)}$$$ ($$$1 \leq M_{(i, j)} \leq 10^6$$$).

The following $$$q$$$ lines contain four integers $$$x_1$$$, $$$y_1$$$, $$$x_2$$$, and $$$y_2$$$ ($$$1 \leq x_1 \leq x_2 \leq n, 1 \leq y_1 \leq y_2 \leq n$$$) — the bounds of the query.

It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2000$$$ and the sum of $$$q$$$ over all test cases does not exceed $$$10^6$$$.

Output

For each test case, output the results of the $$$q$$$ queries on a new line.

Example
Input
2
4 3
1 5 2 4
4 9 5 3
4 5 2 3
1 5 5 2
1 1 4 4
2 2 3 3
1 2 4 3
3 3
1 2 3
4 5 6
7 8 9
1 1 1 3
1 3 3 3
2 2 2 2
Output
500 42 168 
14 42 5 
Note

In the second query of the first test case, $$$A = [9, 5, 5, 2]$$$. Therefore, the sum is $$$1 \cdot 9 + 2 \cdot 5 + 3 \cdot 5 + 4 \cdot 2 = 42$$$.