Can we solve problem 1920C - Partitioning the Array faster in O(n*d(n)) ~ O(n^(4/3))?
I'm getting interested in it.
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
About problem C in latest contest
Can we solve problem 1920C - Partitioning the Array faster in O(n*d(n)) ~ O(n^(4/3))?
I'm getting interested in it.
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en3 | a_little_cute | 2024-01-14 07:53:04 | 4 | Tiny change: 'C] faster in O(n*d(n)' -> 'C] faster than O(n*d(n)' | ||
en2 | a_little_cute | 2024-01-14 07:52:29 | 2 | Tiny change: 'O(n*d(n)) ~ O(n^(4/3)' -> 'O(n*d(n)) ≈ O(n^(4/3)' | ||
en1 | a_little_cute | 2024-01-14 07:52:11 | 136 | Initial revision (published) |
Name |
---|