Is it possible to calculate the following recurrences in $$$O(N*2^N)$$$.
1) $$$dp[mask] = min(dp[mask] , dp[m_1] + dp[m_2]);$$$
where $$$m_1|m_2 = mask$$$
2) $$$dp[mask] = min(dp[mask] , dp[m_1] + dp[m_2]);$$$
where $$$m_1 \oplus m_2 = mask$$$
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
dp with bitmasking ideas needed.
Is it possible to calculate the following recurrences in $$$O(N*2^N)$$$.
1) $$$dp[mask] = min(dp[mask] , dp[m_1] + dp[m_2]);$$$
where $$$m_1|m_2 = mask$$$
2) $$$dp[mask] = min(dp[mask] , dp[m_1] + dp[m_2]);$$$
where $$$m_1 \oplus m_2 = mask$$$
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en2 | Ashwanth.K | 2024-05-11 06:08:51 | 39 | Tiny change: '2 = mask$ \n\n\n ' -> '2 = mask$ and $m_1$ ,$m_2$ are subsets of mask.\n\n\n ' | ||
en1 | Ashwanth.K | 2024-05-11 06:07:58 | 319 | Initial revision (published) |
Name |
---|