Idea:Binary_Thinker
Preparer:Ahmed_Jamal_Sultan
We can observe that "O" and "K" do not "interlock" with each other. So this problem is just finding two disjoint $$$4 \times 3$$$ sub-grids. Using brute force is enough.
Bonus: solve the problem when $$$n,m \le 10^3$$$.
#include <bits/stdc++.h>
using namespace std;
#define int long long
void solve() {
int n, m; cin >> n >> m;
int ans = 0;
for (int i = 0; i < n-3; i++) {
for (int j = 0; j < m-2; j++) {
for (int i2 = 0; i2 < n-3; i2++) {
for (int j2 = 0; j2 < m-2; j2++) {
if (min(i, i2) + 3 < max(i, i2) || min(j, j2) + 2 < max(j, j2)) {
ans++;
}
}
}
}
}
cout << ans << "\n";
}
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
//freopen("file.in", "r", stdin)
//freopen("file.out", "w", stdout);
int t;
cin >> t;
while (t--) solve();
return 0;
}
Idea:wuhudsm
Preparer:Ahmed_Jamal_Sultan
Note $$$k$$$ is the maximum integer such that $$$2^k \le n$$$. We can proof $$$a+b \le 2^(k+1)-1$$$.
Proof:since $$$a$$$ & $$$b=0$$$, there is no carry bit in $$$a+b$$$. And we can pick $$$a=2^{k}-1$$$ and $$$b=2^{k}$$$ to make $$$a+b=2^(k+1)-1$$$.
When $$$a+b=2^(k+1)-1$$$, we can see picking $$$a=2^{k}-1$$$ and $$$b=2^{k}$$$ makes $$$a \cdot b$$$ maximum. So the answer is $$$2^{k} \cdot (2^{k}-1)$$$.
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define fast \
ios_base::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
int main(){
fast;
ll t;
cin>>t;
while(t--){
ll n;
cin>>n;
ll val=0;
for(ll i=0;i<31;i++){
if((n&(1LL<<i))>0) val=i;
}
cout<<(1LL<<val)*((1LL<<val)-1)<<"\n";
}
}
C Yet Another Cool Pair Problem
Idea:wuhudsm
Preparer:wuhudsm,heyyyankit
Note $$$k$$$ is the maximum integer such that $$$2^k \le n$$$. At first, we can easily see a lower bound of the answer — $$$2^{k-1}$$$. To reach this lower bound, we just pick $$$a=2^{k-1}$$$ and $$$b=2^k$$$.
Next, we only consider $$$a∈[2^{k-1}+1,2^{k}-1]$$$ and $$$b∈[2^k+1,2^k+2^{k-1}-1]$$$ which make $$$\gcd(a,b)>2^{k-1}$$$ possible.
We can see the following conclusions.
Conclution 1: $$$\gcd(a,b)=a$$$.
Proof 1: if $$$\gcd(a,b)<a$$$, it means $$$\gcd(a,b)\le a/2 <2^{k-1}$$$, which is too small.
Conclution 2: $$$b=2a$$$.
Proof 2: if $$$b=ka(k>2)$$$, it means $$$b>2^k+2^{k-1}$$$, which is too large.
Now, we need to find the maximum $$$a$$$ that satisfies $$$a$$$ & $$$2a=0$$$. This only holds when there are no two consecutive $$$1$$$'s in the binary representation of $$$a$$$. So, the answer is a number — the largest, not exceeding $$$n$$$, where there are no two consecutive $$$1$$$'s in binary representation.
#include <bits/stdc++.h>
#define all(s) s.begin(), s.end()
using namespace std;
using ll = long long;
const int _N = 1e5 + 5;
void solve() {
ll n; cin >> n;
ll x = 0;
int lst = 0;
for (ll bit = 29; bit >= 0; bit--) {
if (x + (1 << bit) <= n && lst == 0) {
lst = 1;
x |= (1 << bit);
} else lst = 0;
}
cout << x / 2 << '\n';
}
int main() {
int T; cin >> T;
while (T--) {
solve();
}
}
Idea:wuhudsm
Preparer:Banis
First, since $$$(a+b)^2 = a^2 + b^2 + 2ab > a^2+b^2$$$, it's obvious that sum up the numbers first will give a better answer.
Also if there's only one tuple left having positive value, choosing operation $$$1$$$ will give a better answer.
Therefore we will first sum up $$$max(a_i,b_i)$$$ for all tuples, then check $$$min(a_i,b_i)$$$ for all tuples for being the one to perform operation $$$1$$$ to, and find the best answer.
The time complexity will be $$$O(n\ log\ n)$$$ or $$$O(n)$$$ depends on your implementation.
#include<bits/stdc++.h>
#define pi 3.14159265358979323846
#define eb emplace_back
#define ll long long
#define w(t) while(t--)
#define F first
#define S second
#define pii pair<int,int>
#define pll pair<ll,ll>
#define iofast ios::sync_with_stdio(0);cin.tie(0);
using namespace std;
//give sin(),cos() radian, and asin(),acos() gives you radian
struct aaa{
ll a,b;
}arr[200010];
void solve(){
int n;
ll ans=0,sum=0,maxn=0;
cin>>n;
for(int i=0;i<n;i++) cin>>arr[i].a>>arr[i].b;
for(int i=0;i<n;i++){
sum+=max(arr[i].a,arr[i].b);
ans+=min(arr[i].a,arr[i].b)*min(arr[i].a,arr[i].b);
maxn=max(maxn,min(arr[i].a,arr[i].b));
}
sum+=maxn;
ans-=(maxn*maxn);
ans+=sum*sum;
cout<<ans<<'\n';
return;
}
int main(){
iofast
int t;
cin>>t;
w(t) solve();
return 0;
}
Idea:Yugandhar_Master
Preparer:Yugandhar_Master,wuhudsm
Note $$$mx=max(a_1,a_2,\ldots,a_n)$$$ and $$$mn=min(a_1,a_2,\ldots,a_n)$$$.
Case $$$1$$$: $$$mx-mn>1$$$, the answer is $$$0$$$.
Case $$$2$$$: $$$mx=mn$$$
if $$$mx=n-1$$$, the answer is $$$3$$$ when $$$n=2$$$ and $$$1$$$ otherwise;
otherwise, we can see all numbers are not unique. This problem is equivalent to: there are $$$n$$$ balls and $$$mx$$$ boxes, and the balls and boxes are the same. Find the number of solutions where each box has at least two balls. This is a variation of a classic problem, and the answer is $$$C(n-mx-1,mx-1)$$$(don't forge to check $$$n \ge 2mx$$$).
Case $$$3$$$: $$$mx=mn+1$$$
For $$$a_i=mn$$$, we can see $$$b_i$$$ are unique and for $$$a_i=mx$$$, $$$b_i$$$ are not unique. We first assign unique numbers, and then the problem is transformed into Case $$$2$$$.
The time complexity is $$$O(n)$$$.
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define fast \
ios_base::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
ll mod=998244353;
long long power(long long a,long long b){
long long x=1,y=a;
while(b>0){
if(b&1ll){
x=(x*y)%mod;
}
y=(y*y)%mod;
b>>=1;
}
return x%mod;
}
long long modular_inverse(long long n){
return power(n,mod-2);
}
#define MAXN 2000005
long long factorial[MAXN];
long long invfact[MAXN];
void cfact(){
long long i;
factorial[0]=1;
factorial[1]=1;
for(i=2;i<MAXN;i++){
factorial[i]=factorial[i-1]*i;
factorial[i]%=mod;
}
invfact[MAXN-1]=modular_inverse(factorial[MAXN-1]);
for(i=MAXN-2;i>=0;i--){
invfact[i]=invfact[i+1]*(i+1);
invfact[i]%=mod;
}
}
long long calcnCr(long long n,long long k){
if(k<0 || n<k){return 0;}
return (factorial[n]*((invfact[k]*invfact[n-k])%mod))%mod;
}
int main(){
fast;
cfact();
ll t;
cin>>t;
while(t--){
ll n;
cin>>n;
vector<ll> a(n);
for(ll i=0;i<n;i++) cin>>a[i];
ll maxi=*max_element(a.begin(),a.end());
ll mini=*min_element(a.begin(),a.end());
ll res=0;
if(maxi==mini){
if(maxi==(n-1)){
res=1;
if(n==2) res=3;
}
else if(maxi<=(n/2)){
ll m=(a[0]);
res=calcnCr(n,m);
res=(res*calcnCr(n-m-1,m-1))%mod;
}
}
else if(maxi==(mini+1)){
ll cntmax=count(a.begin(),a.end(),maxi);
ll cntmin=count(a.begin(),a.end(),mini);
if(maxi>cntmin && maxi<=cntmin+(cntmax/2)){
ll m=maxi,m1=mini;
m1=count(a.begin(),a.end(),m1);
res=calcnCr(n,m);
res=(res*calcnCr(m,m1))%mod;
res=(res*calcnCr(n-m-1,m-m1-1))%mod;
}
}
cout<<res<<"\n";
}
}
Idea:wuhudsm
Preparer:PROELECTRO444,wuhudsm,SpyrosAliv
Consider we already get the answer for $$$[i,r](1 \le i \le r)$$$, we can use it to get the answer for $$$[i,r+1](1 \le i \le r+1)$$$.
Note $$$pre_i$$$ is the max index such that $$$pre_i<i$$$ and $$$a_{pre_i}=a_i$$$. At first, $$$answer[r+1,r+1]=0$$$. For $$$answer[i,r+1](1 \le i \le r)$$$, there are two cases:
$$$answer[i,r+1]=answer[i,r]$$$. We won't make any changes;
$$$answer[i,r+1]=a_{i+1}$$$. It is only possible for $$$1 \le i \le pre_i$$$. We can use a lazy tag segment tree to maintain the answer.
The time complexity will be $$$O(n\ log\ n)$$$ or $$$O(n\ log^2\ n)$$$ depends on your implementation.
// Author: sendyuripics
// Created: 2024.09.13 21:28:43
// Url: https://mirror.codeforces.com/gym/547746/problem/F
#include<bits/stdc++.h>
#define int long long
using namespace std;
void ts(){cout<<"IAKIOI\n";}
inline int read(){
int n=0,f=1,ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
n=n*10+ch-'0';
ch=getchar();
}
return n*f;
}
//max once, max twice
int N;
int a[200005];
int o[200005];
int lst[200005];
using ll = long long;
const int MAXN = 200001;
const ll llINF=(1ll<<60); // 1-based
ll A[MAXN];
struct Node {
ll sum; // Sum tag
ll max1; // Max value
ll max2; // Second Max value
ll maxc; // Max value count
ll min1; // Min value
ll min2; // Second Min value
ll minc; // Min value count
ll lazy; // Lazy tag
} T[MAXN * 4];
void merge(int t) {
// sum
T[t].sum = T[t << 1].sum + T[t << 1 | 1].sum;
// max
if (T[t << 1].max1 == T[t << 1 | 1].max1) {
T[t].max1 = T[t << 1].max1;
T[t].max2 = max(T[t << 1].max2, T[t << 1 | 1].max2);
T[t].maxc = T[t << 1].maxc + T[t << 1 | 1].maxc;
} else {
if (T[t << 1].max1 > T[t << 1 | 1].max1) {
T[t].max1 = T[t << 1].max1;
T[t].max2 = max(T[t << 1].max2, T[t << 1 | 1].max1);
T[t].maxc = T[t << 1].maxc;
} else {
T[t].max1 = T[t << 1 | 1].max1;
T[t].max2 = max(T[t << 1].max1, T[t << 1 | 1].max2);
T[t].maxc = T[t << 1 | 1].maxc;
}
}
// min
if (T[t << 1].min1 == T[t << 1 | 1].min1) {
T[t].min1 = T[t << 1].min1;
T[t].min2 = min(T[t << 1].min2, T[t << 1 | 1].min2);
T[t].minc = T[t << 1].minc + T[t << 1 | 1].minc;
} else {
if (T[t << 1].min1 < T[t << 1 | 1].min1) {
T[t].min1 = T[t << 1].min1;
T[t].min2 = min(T[t << 1].min2, T[t << 1 | 1].min1);
T[t].minc = T[t << 1].minc;
} else {
T[t].min1 = T[t << 1 | 1].min1;
T[t].min2 = min(T[t << 1].min1, T[t << 1 | 1].min2);
T[t].minc = T[t << 1 | 1].minc;
}
}
}
void push_add(int t, int tl, int tr, ll v) {
if (v == 0) { return; }
T[t].sum += (tr - tl + 1) * v;
T[t].max1 += v;
if (T[t].max2 != -llINF) { T[t].max2 += v; }
T[t].min1 += v;
if (T[t].min2 != llINF) { T[t].min2 += v; }
T[t].lazy += v;
}
// corresponds to a chmin update
void push_max(int t, ll v, bool l) {
if (v >= T[t].max1) { return; }
T[t].sum -= T[t].max1 * T[t].maxc;
T[t].max1 = v;
T[t].sum += T[t].max1 * T[t].maxc;
if (l) {
T[t].min1 = T[t].max1;
} else {
if (v <= T[t].min1) {
T[t].min1 = v;
} else if (v < T[t].min2) {
T[t].min2 = v;
}
}
}
// corresponds to a chmax update
void push_min(int t, ll v, bool l) {
if (v <= T[t].min1) { return; }
T[t].sum -= T[t].min1 * T[t].minc;
T[t].min1 = v;
T[t].sum += T[t].min1 * T[t].minc;
if (l) {
T[t].max1 = T[t].min1;
} else {
if (v >= T[t].max1) {
T[t].max1 = v;
} else if (v > T[t].max2) {
T[t].max2 = v;
}
}
}
void pushdown(int t, int tl, int tr) {
if (tl == tr) return;
// sum
int tm = (tl + tr) >> 1;
push_add(t << 1, tl, tm, T[t].lazy);
push_add(t << 1 | 1, tm + 1, tr, T[t].lazy);
T[t].lazy = 0;
// max
push_max(t << 1, T[t].max1, tl == tm);
push_max(t << 1 | 1, T[t].max1, tm + 1 == tr);
// min
push_min(t << 1, T[t].min1, tl == tm);
push_min(t << 1 | 1, T[t].min1, tm + 1 == tr);
}
void build(int t = 1, int tl = 0, int tr = N - 1) {
T[t].lazy = 0;
if (tl == tr) {
T[t].sum = T[t].max1 = T[t].min1 = A[tl];
T[t].maxc = T[t].minc = 1;
T[t].max2 = -llINF;
T[t].min2 = llINF;
return;
}
int tm = (tl + tr) >> 1;
build(t << 1, tl, tm);
build(t << 1 | 1, tm + 1, tr);
merge(t);
}
void update_add(int l, int r, ll v, int t = 1, int tl = 0, int tr = N - 1) {
if (r < tl || tr < l) { return; }
if (l <= tl && tr <= r) {
push_add(t, tl, tr, v);
return;
}
pushdown(t, tl, tr);
int tm = (tl + tr) >> 1;
update_add(l, r, v, t << 1, tl, tm);
update_add(l, r, v, t << 1 | 1, tm + 1, tr);
merge(t);
}
void update_chmin(int l, int r, ll v, int t = 1, int tl = 0, int tr = N - 1) {
if (r < tl || tr < l || v >= T[t].max1) { return; }
if (l <= tl && tr <= r && v > T[t].max2) {
push_max(t, v, tl == tr);
return;
}
pushdown(t, tl, tr);
int tm = (tl + tr) >> 1;
update_chmin(l, r, v, t << 1, tl, tm);
update_chmin(l, r, v, t << 1 | 1, tm + 1, tr);
merge(t);
}
void update_chmax(int l, int r, ll v, int t = 1, int tl = 0, int tr = N - 1) {
if (r < tl || tr < l || v <= T[t].min1) { return; }
if (l <= tl && tr <= r && v < T[t].min2) {
push_min(t, v, tl == tr);
return;
}
pushdown(t, tl, tr);
int tm = (tl + tr) >> 1;
update_chmax(l, r, v, t << 1, tl, tm);
update_chmax(l, r, v, t << 1 | 1, tm + 1, tr);
merge(t);
}
ll query_sum(int l, int r, int t = 1, int tl = 0, int tr = N - 1) {
if (r < tl || tr < l) { return 0; }
if (l <= tl && tr <= r) { return T[t].sum; }
pushdown(t, tl, tr);
int tm = (tl + tr) >> 1;
return query_sum(l, r, t << 1, tl, tm) + query_sum(l, r, t << 1 | 1, tm + 1, tr);
}
void solve(){
N=read();
map<int,int> mp;
for(int i=0;i<N;i++){
a[i]=read();
lst[i]=(mp.count(a[i])?mp[a[i]]:-1ll);
mp[a[i]]=i;
o[i]=0;
}
build();
int res=0;
for(int i=0;i<N;i++){
if(lst[i]!=-1)update_chmax(0,lst[i],a[i]);
res+=query_sum(0,N-1);
}
cout<<res<<"\n";
}
signed main(){
int t=read();
while(t--)solve();
return 0;
}
//look at my code
//my code is amazing
Disclaimer: different from Not a Nim Problem, it is really not an SQRT problem.
Use a variant of the Euler tour. Let's call it BFS-children-first-DFS.
First, node $$$1$$$ is added to the sequence, then $$$DFS(1)$$$ is performed. When $$$DFS(x)$$$ is called, all child nodes of $$$x$$$ are added to the sequence, and then $$$DFS(son[x][i])$$$ is performed.
For example, for the tree shown above, the BFS-children-first-DFS order is $$$[1,2,11,3,4,5,6,7,8,10,9]$$$.
In this way, the subtree rooted at node $$$x$$$ (excluding $$$x$$$ itself) and all the child nodes of node $$$x$$$ are within a contiguous segment of the sequence. This makes it easy to maintain the operations in $$$O(n log n)$$$.
#include <bits/stdc++.h>
#define GO cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);
typedef long long ll;
using namespace std;
const int N = 3e5 + 50;
vector<int> adj[N];
ll T[N * 4], lazy[N * 4];
int ind[N], in[N], out[N], out2[N];
int Time = 1;
int n;
void push(int x, int l, int r){
if(!lazy[x]) return;
T[x] += lazy[x];
if(l < r){
lazy[x * 2] += lazy[x];
lazy[x * 2 + 1] += lazy[x];
}
lazy[x] = 0;
}
void update(int i, int j, int val, int x = 1, int l = 1, int r = n){
push(x, l, r);
if(r < i || l > j) return;
if(l >= i && r <= j){
lazy[x] = val;
push(x, l, r);
return;
}
int mid = (l + r) / 2;
update(i, j, val, x * 2, l, mid);
update(i, j, val, x * 2 + 1, mid + 1, r);
T[x] = max(T[x * 2], T[x * 2 + 1]);
}
ll query(int i, int j, int x = 1, int l = 1, int r = n){
push(x, l, r);
if(r < i || l > j) return -1e18;
if(l >= i && r <= j) return T[x];
int mid = (l + r) / 2;
ll q1 = query(i, j, x * 2, l, mid);
ll q2 = query(i, j, x * 2 + 1, mid + 1, r);
return max(q1, q2);
}
void DFS(int u = 1, int p = 1){
bool f = 0;
for(int v : adj[u]){
if(v == p) continue;
++Time;
if(!f) in[u] = Time;
out[u] = Time;
ind[v] = Time;
f = 1;
}
for(int v : adj[u]){
if(v == p) continue;
DFS(v, u);
}
out2[u] = Time;
}
int main()
{
GO
int q;
cin >> n >>q;
ind[1] = 1;
for(int i = 0; i < n - 1; i++){
int a, b;
cin >> a >> b;
adj[a].push_back(b);
adj[b].push_back(a);
}
DFS();
// cin >> q;
while(q--){
int t;
cin >> t;
//
// cout<<"t="<<t<<'\n';
//
if(t == 1){ //Add v to all nodes in the subtree rooted at node x
int u, x;
cin >> u >> x;
update(ind[u], ind[u], x);
if(in[u])
update(in[u], out2[u], x);
}
else if(t == 2){ //Add v to all children of node x.if it has children
int u, x;
cin >> u >> x;
if(in[u])
update(in[u], out[u], x);
}
else if(t == 3){ //Query the maximum value in the subtree rooted at node x.
int u;
cin >> u;
ll ans = query(ind[u], ind[u]);
if(in[u]) ans = max(ans, query(in[u], out2[u]));
cout << ans << '\n';
}
else{ //Query the maximum value among all children of node x if there's children otherwise print 0
int u;
cin >> u;
ll ans = -1e18;
if(in[u]) ans = max(ans, query(in[u], out[u]));
cout << ans << '\n';
}
}
return 0;
}