Segment Tree From The IMO
Разница между en8 и en9, 604 символ(ов) изменены
Here's the problem (IMO 2013 Problem 1): Assume that $k$ and $n$ are two positive integers. Prove that there exist positive integers $m_1 , \dots , m_k$ such that $1+\frac{2^k-1}{n}=\left(1+\frac1{m_1}\right)\cdots \left(1+\frac1{m_k}\right).$ ↵

There is an inductive proof, but some people have issues with induction because they give no insight. ↵

Another solution path is just plugging in formulas and if they're right it generally works out. But there may beno hints as to where the formula came from. My proof and intuition behind my solution has a lot of similarities with how segment trees function. 


Think:↵

<spoiler summary="Spoiler 0">↵
How is this related to segtrees?↵
</spoiler>↵


<spoiler summary="Spoiler 1">↵
Could you reformulate the "fraction multiplication" into something that is more similar to something related to segtrees?↵
</spoiler>↵


<spoiler summary="Spoiler 2">↵
Maybe relating the ranges of size 2^k to the fractions of the form 1 + 1/m↵
</spoiler>↵

  ↵

<spoiler summary="Spoiler 3">↵
Yes, each thing on the RHS may be taken as ranges. But you need the range length (including start, but not end) to be a divisor of the numerator. Hmmm now how could we do this? ↵
</spoiler>↵


<spoiler summary="Spoiler 4">↵
In a segment tree that covers the range (1,1024), look at all the nodes that cover ranges of size 8. Do they have anything in common with fractions of the form 1+1/m?
 Let's try to turn the LHS fraction $\frac{n+2^k-1}{n}$ to a range $[n, n+2^k-1]$. Let's try to "modify" our segment tree so that each range overlaps with the previous range of the same size, such as [0,8], [8,16], [16,24] for size = 8.
</spoiler>↵

<spoiler summary="Mega Spoiler">↵
What happens when you do a range sum query? What happens to the lengths?↵
</spoiler>↵

Here's a generalization, which is much easier once you've found the segtree solution to the above problem. Assume that $k$ and $n$ are two positive integers. Prove that there exist positive integers $m_1 , \dots , m_k$ such that $1+\frac{k}{n}=\left(1+\frac1{m_1}\right)\cdots \left(1+\frac1{m_l}\right)$, where $l$ is an integer and $l \leq 2 \times ceil(log_2(k/2+1))$. ↵

Challenge: Implement the two variants of the problem. In the generalization, you are given $k$ and $n$, and you are required to output an array that consists of $m_1$, $m_2$, ..., $m_l$. 

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en13 Английский wfe2017 2017-02-08 19:48:16 71
en12 Английский wfe2017 2017-02-04 20:08:33 144
en11 Английский wfe2017 2017-02-04 19:35:37 69
en10 Английский wfe2017 2017-02-04 19:33:57 407
en9 Английский wfe2017 2017-02-04 14:52:33 604
en8 Английский wfe2017 2017-02-04 14:17:42 365
en7 Английский wfe2017 2017-02-04 11:16:24 7 Tiny change: ' $l \leq 2\ceil(log_2' -> ' $l \leq 2 \times ceil(log_2'
en6 Английский wfe2017 2017-02-04 11:15:55 12 Tiny change: 'd $l \leq log_2(k)+1$. \n\nCha' -> 'd $l \leq 2\ceil(log_2(k/2+1))$. \n\nCha'
en5 Английский wfe2017 2017-02-04 11:13:54 6 Tiny change: 'er and $l <= log_2(k)+' -> 'er and $l \leq log_2(k)+'
en4 Английский wfe2017 2017-02-04 11:13:32 211
en3 Английский wfe2017 2017-02-04 11:11:40 1307 (published)
en2 Английский wfe2017 2017-02-04 11:03:39 7
en1 Английский wfe2017 2017-02-04 11:03:15 271 Initial revision (saved to drafts)