You're given $n$ integers $a_1,a_2,\dots,a_n$, you need to count the number of ways to choose some of them (no duplicate) to make the sum equal to $S$,. Print the answer in modulo $10^9+7$. How to solve this problem in polynomial time?
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en3 | rlajkalspowq | 2020-04-01 06:00:51 | 197 | |||
en2 | rlajkalspowq | 2019-12-06 17:02:56 | 19 | Tiny change: 'ual to $S$, in modulo' -> 'ual to $S$. Print the answer in modulo' | ||
en1 | rlajkalspowq | 2019-12-06 17:01:08 | 246 | Initial revision (published) |
Name |
---|