The problem can be found here: 12995 — Farey Sequence
I know the final answer but idk how to get it myself.
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
How to solve 12995 — Farey Sequence
The problem can be found here: 12995 — Farey Sequence
The final answer will be the $$$summation(phi[i]) - 1$$$ for all $$$i$$$ from $$$1$$$ to $$$n$$$ where $$$phi[i]$$$ is the Euler's totient function.
Название |
---|