achhadahappy's blog

By achhadahappy, history, 10 months ago, In English

Hello, CodeForces enthusiasts! I am thrilled to introduce Procoder Insight's CodeForces Visualizer, a sleek web app designed to enhance your competitive programming journey. Let's dive into the key features that make this tool a game-changer.

Features:

Contest Standings: View and analyze your CodeForces contest standings effortlessly. Gain insights to improve your performance and sharpen your skills.

Your Solved Problems: Explore a personalized list of problems you've conquered in CodeForces contests. Celebrate your victories and track your coding progress over time.

Friend's Solved Problems: Track problems solved by your friends on CodeForces. Identify unsolved challenges for your personal improvement journey. Check the Live Demo Click here.

I would love to hear your feedback and improvements on this.

Full text and comments »

  • Vote: I like it
  • 0
  • Vote: I do not like it

By achhadahappy, history, 18 months ago, In English

You will be given an array and some queries. Each query will contain three integers l, r, and x. You have to return the count of the integer in array in the range [l,r] whose value is less than or equal to x. for example n=7 q=2 5 4 8 7 6 2 1 1 3 5 2 5 6

ans = 2 2

Full text and comments »

  • Vote: I like it
  • +3
  • Vote: I do not like it

By achhadahappy, history, 18 months ago, In English
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#define ll long long
#define int long long
#define endl "\n"
#define ptr(a, n)               \
    for (int i = 0; i < n; i++) \
    {                           \
        cout << a[i] << ' ';    \
    }
#define fort(z, x, t) for (ll z = x; z < t; z++)
#define rev(z, x, t) for (ll z = t; z > x; z--)
#define arin(a, n)             \
    ll a[n];                   \
    for (ll i = 0; i < n; i++) \
    {                          \
        cin >> a[i];           \
    }
#define pb push_back
#define vein(v, n)             \
    vector<ll> v;              \
    for (ll i = 0; i < n; i++) \
    {                          \
        ll x;                  \
        cin >> x;              \
        v.pb(x);               \
    }
#define seint(s, n)            \
    set<int> s;                \
    for (ll i = 0; i < n; i++) \
    {                          \
        ll x;                  \
        cin >> x;              \
        s.insert(x);           \
    }
#define vint(v) vector<ll> v;
#define vstring(vs, n)         \
    vector<string> vs;         \
    for (ll i = 0; i < n; i++) \
    {                          \
        string s;              \
        cin >> s;              \
        vs.pb(s);              \
    }
#define num(n) \
    ll n;      \
    cin >> n;
#define out(n) cout << n << endl;
#define sortv(v) sort(v.begin(), v.end());
#define mpll map<ll, ll> mpi;
#define mpchar map<char, ll> mpc;
#define cin(a, n, b) \
    f(i, n)          \
    {                \
        cin >> a[i]; \
        b[i] = a[i]; \
    }
#define yes cout << "YES" << endl;
#define no cout << "NO" << endl;
typedef tree<ll, null_type, less_equal<ll>, rb_tree_tag, tree_order_statistics_node_update> ordered_multiset;
typedef tree<ll, null_type, less<ll>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;
const int N = 1e5 + 10;
int mod = 1e9 + 7;
int fun(int mid, int k, vector<int> &v)
{
    int n = v.size();
    int val = 0;
    for (int i = 0; i < n; i++)
    {
        val += max(0ll, mid - v[i]);
        if (val > k)
            return 0;
    }
    if (val > k)
        return 0;
    return 1;
}
void solve()
{
    num(n);
    num(k);
    vein(v, n);
    sortv(v);
    int req = 0;
    for (int i = 0; i < n; i++)
    {
        req += max(0ll, v.back() - v[i]);
    }
    if (req <= k)
    {
        k -= req;
        int val1 = k / n;
        int val2 = k % n;
        for (int i = 0; i < n; i++)
        {
            v[i] = val1 + v.back();
        }
        sortv(v);
        for (int i = 0; i < val2; i++)
            v[i]++;
        vector<int> suf(n + 1, 0);
        suf[n - 1] = v[n - 1];
        for (int i = n - 2; i >= 0; i--)
        {
            suf[i] = suf[i + 1] + v[i];
        }
        int ans = 0;
        for (int i = 0; i < n - 1; i++)
        {
            ans += (v[i] * suf[i + 1]) % mod;
            ans %= mod;
        }
        out(ans % mod);
        return;
    }
    sortv(v);
    int miin = v[0];
    int maax = v.back();
    while (miin + 1 < maax)
    {
        int mid = (miin + maax) / 2;
        if (fun(mid, k, v))
        {
            miin = mid;
        }
        else
        {
            maax = mid;
        }
    }
    for (int i = 0; i < n; i++)
    {
        if (v[i] < miin)
        {
            int val2 = min(k, miin - v[i]);
            v[i] += val2;
            k -= val2;
        }
    }
    sortv(v);
    for (int i = 0; i < k; i++)
    {
        v[i]++;
    }
    sortv(v);
    vector<int> suf(n + 1, 0);
    suf[n - 1] = v[n - 1];
    for (int i = n - 2; i >= 0; i--)
    {
        suf[i] = suf[i + 1] + v[i];
    }
    int ans = 0;
    for (int i = 0; i < n - 1; i++)
    {
        ans += (v[i] * suf[i + 1]) % mod;
        ans %= mod;
    }
    // ptr(v, n);
    // cout << endl;
    out(ans % mod);
}
signed main()
{
    // #ifndef ONLINE_JUDGE
    // freopen("input.txt", "r", stdin);
    // freopen("output.txt", "w", stdout);
    // #endif
    std::ios::sync_with_stdio(false);
    std::cin.tie(0);
    int t;
    cin >> t;
    fort(i, 0, t)
        solve();
    return 0;
}

Please help me, I don't know what is wrong. Ploblem Link

Full text and comments »

  • Vote: I like it
  • -15
  • Vote: I do not like it

By achhadahappy, history, 20 months ago, In English

I solved the problem by taking the maximum weight first and then further checking if one more child can be fit into the same gondola. As per the question, atmost 2 children can only sit in one gondola but I was thinking if this constraint was not present then will the same solution work i.e first try to make sit all the heavy weights children till weight does not exceed x and then add new children of small weights till we did not exceed the limit. I am confused will the same solution will work or not Question link

Full text and comments »

  • Vote: I like it
  • 0
  • Vote: I do not like it