Блог пользователя ahcl

Автор ahcl, история, 9 лет назад, По-английски

Hello everyone!

Today, I will introduce a fastest solution for the problem: count number of 1 bits in a 63-bit integer X.

One basic solution for this problems:

int getbit(long long x,int k)
{
      return ((x>>k)&1);
}
int cal(long long x)
{
      int ans = 0;
      for(int i=0;i<=62;i++) ans += getbit(x,i);
      return ans;
}

This algorithm run with O(63) complexity. It is an acceptable solution but some cases you need a better solution. I will introduce for you an algorithm can run with O(3) complexity.

Firstly, we create an array F[1<<21], F[i] : number 1 bits of i; // example: F[5] = 2 (5="101") F[7] = 3 (7="111")

The main idea of this algorithm is separate that number into 3 blocks, each block have 63/3 = 21 bits;

For example with a small number: X = "101101", 3 blocks, each block have 2 bits.

  • Block_1 = "10" (equal 2 in decimal system)
  • Block_2 = "11" (equal 3 in decimal system)
  • Block_3 = "01" (equal 1 in decimal system)
  • Ans(X) = F[block_1] + F[Block_2] + F[Block_3] = F[2] + F[3] + F[1] = 1 + 2 + 1 = 4;

Now, how do you get value of Block 1, 2 and 3 with O(1) complexity? There is an easy method to do this.

Follow the steps:

  • Step1: Calculate value of Block3 by getting last 21 bits;
  • Step2: Shift to right X 21 bits;
  • Step3: Calculate value of Block 2 by getting last 21 bits;
  • Step4: Shift to right x 21 bits;
  • Step5: calculate value of Block1;

Here is my code:


#include <bits/stdc++.h> using namespace std; int F[1<<21]; void init() { F[1] = 1; for(int i=1;i<(1<<20);i++) { F[i*2] = F[i]; F[i*2+1] = F[i] + 1; } } int get21bit(long long x) { return (x & ((1<<21) -1) ); } int cal(long long x) { int ans = 0; for(int i=1;i<=3;i++) { int t = get21bit(x); ans += F[t]; x>>=21; } return ans; } int main() { init(); long long X; X = 1187340987109834710; // X = "‭0001000001111010010010000101011001000011111100010111111111010110‬"; cout<<cal(X); return 0; }

I hope it will be useful for you! Have a good day!

UPD1: In a C++ program, you can use function __builtin_popcountll() to solve this problem. It is really faster than my algorithm. So, I think you can apply my algorithm for another compiler.

Полный текст и комментарии »

  • Проголосовать: нравится
  • -4
  • Проголосовать: не нравится