Given *a*, *b*, *c* as real numbers such that *a*^{2} + *b*^{2} + *c*^{2} = 1

Prove that 2(1 + *a*)(1 + *b*)(1 + *c*) ≥ *abc*

# | User | Rating |
---|---|---|

1 | tourist | 3947 |

2 | jiangly | 3740 |

3 | Radewoosh | 3652 |

4 | Benq | 3626 |

5 | jqdai0815 | 3620 |

6 | orzdevinwang | 3612 |

7 | ecnerwala | 3587 |

8 | Geothermal | 3569 |

8 | cnnfls_csy | 3569 |

10 | ksun48 | 3485 |

# | User | Contrib. |
---|---|---|

1 | awoo | 162 |

2 | maomao90 | 160 |

3 | adamant | 156 |

4 | atcoder_official | 155 |

5 | cry | 152 |

5 | maroonrk | 152 |

7 | nor | 150 |

8 | SecondThread | 148 |

8 | -is-this-fft- | 148 |

10 | Petr | 147 |

Given *a*, *b*, *c* as real numbers such that *a*^{2} + *b*^{2} + *c*^{2} = 1

Prove that 2(1 + *a*)(1 + *b*)(1 + *c*) ≥ *abc*

Codeforces (c) Copyright 2010-2024 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Aug/13/2024 09:49:38 (i1).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|