Блог пользователя tejas10p

Автор tejas10p, история, 23 месяца назад, По-английски

We invite you to participate in CodeChef’s Starters 71, this Wednesday, 28st December, rated for Divs 2, 3 & 4.

Time: 8 PM — 11:00 PM IST

Joining us on the problem setting panel are:

Written editorials will be available for all on discuss.codechef.com. Pro users can find the editorials directly on the problem pages after the contest.

The video editorials of the problems will be available for all users for 1 day as soon as the contest ends, after which they will be available only to Pro users.

Also, if you have some original and engaging problem ideas, and you’re interested in them being used in CodeChef's contests, you can share them here.

Hope to see you participating.

Good Luck!

  • Проголосовать: нравится
  • +20
  • Проголосовать: не нравится

»
23 месяца назад, # |
  Проголосовать: нравится +7 Проголосовать: не нравится

Do codechef have any plans to bring cookoffs back in (near) future ?

  • »
    »
    23 месяца назад, # ^ |
      Проголосовать: нравится +11 Проголосовать: не нравится

    As far as I know,cookoffs and lunchtime are handled by antontrygub and mhq. And it seems that Div1 round will not be held in very near future.

  • »
    »
    23 месяца назад, # ^ |
      Проголосовать: нравится +20 Проголосовать: не нравится

    The plan was to decrease tourist’s rating and never let him participate in a rated contest again.

  • »
    »
    23 месяца назад, # ^ |
      Проголосовать: нравится +7 Проголосовать: не нравится

    don't make any post against codechef otherwise they will start downvoting you

»
23 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

problem Expected Sum:-

input:- 3 4 output:- 285212674 how??

i am trying to solve it on paper and i am getting (28/35). explain

  • »
    »
    23 месяца назад, # ^ |
      Проголосовать: нравится +10 Проголосовать: не нравится

    wait for the contest to end :)

  • »
    »
    23 месяца назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    The expected value is equal to $$$\lceil \frac{N}{2} \rceil \cdot (1 \cdot \frac{A}{N} + 0 \cdot \frac{B}{N})$$$ (with $$$N=A+B$$$), which is equal to $$$\lceil \frac{N}{2} \rceil \cdot \frac{A}{N}$$$. So you just have to calculate the modular inverse of $$$2 \cdot N$$$.

    For $$$A=3$$$ and $$$B=4$$$ the expected sum is $$$\frac{12}{7}$$$.

»
23 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Any hints on unique mode ?

  • »
    »
    23 месяца назад, # ^ |
      Проголосовать: нравится +8 Проголосовать: не нравится

    Think about all subarrays with each mode. First count the ones with mode 1, then 2 and so on. Obviously, only count those who have 1 maximum.

»
23 месяца назад, # |
Rev. 2   Проголосовать: нравится +12 Проголосовать: не нравится

Can someone tell me how ppl end up with same solutions? Also please someone tell if these 2 solutions will fall under plag?

I seriously want my rank 69, currently at 71 but if these 2 submissions are caught under plag then I might get rank 69. [Edit 1 : These 2 submissions have just a difference of 1 variable name change of array. He has matrix and other person has named it mat. That's all!! So I think it falls under plag since rest all things are same] Smh these weren't caught under plag.

https://www.codechef.com/viewsolution/83717025 https://www.codechef.com/viewsolution/83719372

»
23 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How to solve expected sum?

  • »
    »
    23 месяца назад, # ^ |
      Проголосовать: нравится +1 Проголосовать: не нравится

    Solve it as if chef was picking (A+B+1)/2 cards. (That's whole number division, so 5/2 = 2), but ignore the fact that the card gets removed as it doesn't matter for the final answer.

    Let K=(A+B)/2. Then the expected value is K*A/(A+B)

»
23 месяца назад, # |
Rev. 2   Проголосовать: нравится +8 Проголосовать: не нравится
  • »
    »
    23 месяца назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Sir, you wrote a dp solution for expected sum. Can you share it please. For 3, 4 how to calculate the output? Can you share code plz

    • »
      »
      »
      23 месяца назад, # ^ |
      Rev. 4   Проголосовать: нравится 0 Проголосовать: не нравится

      Other than dp, there exists a combinatorics solution too. Suppose, you want a score of $$$x$$$ at the end of game, so you have to choose $$$x$$$ times 1 and rest times 0. In a game of $$$n$$$ moves, you have total $$$t = \frac{n + 1}{2}$$$ moves, so the probability comes out to be:

      $$$ p(x) = \Large{\frac{{{a}\choose{x}} {{b}\choose{t - x}}}{{n}\choose{t}}} $$$

      So, to calculate expected moves, you need to compute the sum $$$\sum{x \cdot p(x)}$$$, which can be done in $$$\mathcal{O}(n)$$$ time.

      AC + RTE submission, though not WA.

      • »
        »
        »
        »
        23 месяца назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        But $$$N \leq 10^9$$$...

        • »
          »
          »
          »
          »
          23 месяца назад, # ^ |
            Проголосовать: нравится +8 Проголосовать: не нравится

          Yeah, I know. I just shared a naive solution which @BoringDay had asked to calculate/check answer for basic examples.

          My actual solution uses a constant-time formula, but it doesn't give insight on the mathematical approach.

          • »
            »
            »
            »
            »
            »
            23 месяца назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится

            Thank you so much and how did you converted it to a O(1) solution. Can you explain that please

            • »
              »
              »
              »
              »
              »
              »
              23 месяца назад, # ^ |
                Проголосовать: нравится 0 Проголосовать: не нравится

              I just did observation. When a+b is even, then it's easy to observe that the ans is a/2. When a+b is odd, then by fixing a, I observed a pattern in fractions, and got it reduced to a simple expression.

    • »
      »
      »
      23 месяца назад, # ^ |
        Проголосовать: нравится +2 Проголосовать: не нравится

      $$$dp[O][Z]$$$ denotes the expected first player will get if we start with $$$O$$$ ones and $$$Z$$$ zeros.

      Base cases -
      $$$dp[O][0] = (O+1)/2$$$, and
      $$$dp[0][Z]=0$$$

      First player will chose $$$0$$$ with probability $$$Z/(O+Z)$$$ and $$$1$$$ with probability $$$O/(O+Z)$$$.
      Therefore, $$$dp[O][Z-1]$$$ with be the expected value the second player will get with the probability $$$Z/(O+Z)$$$, $$$dp[O-1][Z]$$$ with probability $$$O/(O+Z)$$$.

      We also know that since the sum of the expected values of both players is $$$O$$$. Hence,
      $$$dp[O][Z]=O-dp[O][Z-1]*Z/(O+Z)-dp[O-1][Z]*O/(O+Z)$$$

      To get these values as fractions, I have used fractions lib in python
      Overall, it's an $$$O(O*Z)$$$ solution, I have used it to print values and guess the formula.