Given two lines L1 and L2, How can I determine whether they are parallel or not? Here L1 contains (x1,y1)(x2,y2) and L2 contains (X3,y3)(x4,y4)
# | User | Rating |
---|---|---|
1 | jiangly | 3977 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3483 |
8 | hos.lyric | 3381 |
9 | gamegame | 3374 |
10 | heuristica | 3358 |
# | User | Contrib. |
---|---|---|
1 | cry | 170 |
2 | -is-this-fft- | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 160 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 152 |
8 | awoo | 152 |
10 | TheScrasse | 147 |
Given two lines L1 and L2, How can I determine whether they are parallel or not? Here L1 contains (x1,y1)(x2,y2) and L2 contains (X3,y3)(x4,y4)
Name |
---|
I find the nicest way is to use cross product. This avoids any potential division by zero.
Let $$$L_1$$$ be defined by points $$$P_1$$$ and $$$P_2$$$ and $$$L_2$$$ be defined by points $$$P_3$$$ and $$$P_4$$$. Then $$$(P_2 - P_1) \times (P_4 - P_3) = 0$$$ if and only if $$$L_1$$$ and $$$L_2$$$ are parallel. Of course, when using floating points you would rather check if the absolute value of the cross product is less than some very small number, probably something like $$$\epsilon = 10^{-9}$$$.