I know it may not be relevant to cp but i see some editorials talk about this formula. And how can we generalize it for polynomial of nth degree.
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
I know it may not be relevant to cp but i see some editorials talk about this formula. And how can we generalize it for polynomial of nth degree.
Name |
---|
Basically, it manifests the relationship between the coefficients and roots of a polynomial. Consider a quadratic equation $$$ax^2 + bx + c$$$. Lets suppose that $$$\alpha$$$ and $$$\beta$$$ are the roots of this equation, then:
$$$\alpha + \beta$$$ = $$$-b / a$$$
$$$\alpha \beta$$$ = $$$c / a$$$
I am pretty sure that you are familiar with this relationship without knowing the fact that it is called the "Vieta's formula"