I know it may not be relevant to cp but i see some editorials talk about this formula. And how can we generalize it for polynomial of nth degree.
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
I know it may not be relevant to cp but i see some editorials talk about this formula. And how can we generalize it for polynomial of nth degree.
Название |
---|
Basically, it manifests the relationship between the coefficients and roots of a polynomial. Consider a quadratic equation $$$ax^2 + bx + c$$$. Lets suppose that $$$\alpha$$$ and $$$\beta$$$ are the roots of this equation, then:
$$$\alpha + \beta$$$ = $$$-b / a$$$
$$$\alpha \beta$$$ = $$$c / a$$$
I am pretty sure that you are familiar with this relationship without knowing the fact that it is called the "Vieta's formula"