I am trying to solve the following problem, but I don't know how to begin, Any hint/approach is appreciated
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
I am trying to solve the following problem, but I don't know how to begin, Any hint/approach is appreciated
Название |
---|
$$$\sum_{j=L}^{R} \sum_{k=j+1}^{R}(A_j*A_k)=((\sum_{j=L}^{R} A_j)^2-\sum_{j=L}^{R}A_j^2)/2$$$, so you can maintain two segment trees, one for $$$(\sum_{j=L}^{R} A_j)^2$$$, and the second for $$$\sum_{j=L}^{R}A_j^2$$$. To update first segment tree, you will need to maintain $$$\sum_{j=L}^{R} A_j$$$.
Represent the summation in a simpler way and then it should become trivial.