Блог пользователя Jamshed11

Автор Jamshed11, 14 месяцев назад, По-английски

If you are someone who writes normal DP code first and then converts it to space optimized one, you can use this trick.

If our problem involves n * k states for DP, and at any point our state transition involves only moving from dp[i][x] to dp[i][y] or from dp[i][x] to dp[i + 1][y] i.e from i th layer to i th or i + 1 th layer, we can solve it in O(k) space.

But many times I first write code that uses O(n * k) space and then I optimize the space complexity. (It's easier for debugging)

Code that uses O(n * k) space looks something like this:

vector<vector<ll>> dp (n+1, vector<ll> (k+1));

//Filling answers for initial states
dp[0][0] = 1;

for (ll i = 0; i < n; i++)
{
    for (ll j = 0; j < k; j++)
    {   
        //State transitions from i th layer to i th or i + 1 th layer
        dp[i][j+1] += dp[i][j];
        dp[i+1][j+1] += dp[i][j];
    }
}

E.g. 224168964

To convert this code to use O(k) space, I create 2 1-D vectors named dp and newDp and replace every occurrence of dp[i] with dp and every occurrence of dp[i+1] with newDp, and at the end of the first for loop I assign dp = newDp.

Code that uses O(k) space looks something like this:

vector<ll> dp (k+1);

//Filling answers for initial states
dp[0] = 1;

for (ll i = 0; i < n; i++)
{
    vector<ll> newDp (k+1);
    
    for (ll j = 0; j < k; j++)
    {   
        //State transitions from dp to dp or newDp
        dp[j+1] += dp[j];
        newDp[j+1] += dp[j];
    }

    dp = newDp;
}

E.g. 224028960

Instead of doing all these replacements I came up with a better idea.

The idea is my code will be very similar to the code that uses O(n * k) space. The only difference will be at the start of the i th layer I will assign memory to i + 1 th layer and when I am done with the i th layer I will release memory of i th layer i.e in the first for loop at the beginning I will do dp[i+1].assign(k + 1, 0); and at the end I will do dp[i].clear(); dp[i].shrink_to_fit();

Code that uses O(k) space using this trick looks something like this:

(It actually uses O(max(n, k)) space)

vector<vector<ll>> dp (n+1);

//Filling answers for initial states
dp[0].assign(k + 1, 0);
dp[0][0] = 1;

for (ll i = 0; i < n; i++)
{
    dp[i + 1].assign(k + 1, 0);
    
    for (ll j = 0; j < k; j++)
    {   
        //State transitions from i th layer to i th or i + 1 th layer
        dp[i][j+1] += dp[i][j];
        dp[i+1][j+1] += dp[i][j];
    }

    dp[i].clear();
    dp[i].shrink_to_fit(); 
}

E.g. 224031624

Note: Only using dp[i].clear(); will still give you MLE as it only removes all elements from the vector but the underlying storage is not released. You need to use dp[i].shrink_to_fit(); to actually release the memory.

  • Проголосовать: нравится
  • +45
  • Проголосовать: не нравится

»
14 месяцев назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

Nice explanation !

»
14 месяцев назад, # |
  Проголосовать: нравится +19 Проголосовать: не нравится

I've seen a lot of people using this approach, but I always prefer using a static array. It goes something like this:

int dp[2][MaxK];

//Filling answers for initial states
dp[0][0] = 1;

bool cur = 0;

for (ll i = 0; i < n; i++)
{
    cur = !cur;
    
    for (ll j = 0; j <= k; j++)
        dp[cur][j] = 0;
    
    for (ll j = 0; j < k; j++)
    {   
        //State transitions from dp to dp or newDp
        dp[!cur][j+1] += dp[!cur][j];
        dp[cur][j+1] += dp[!cur][j];
    }
}
»
14 месяцев назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Instead, you can just write ($$$index$$$ & $$$1$$$), for ($$$index + 1$$$) parity changes. A bit general way, if you have a dependency of $$$dp[i]$$$ on $$$dp[i+1]$$$, $$$dp[i+2]$$$, ...., $$$dp[i+k-1]$$$, then you can simply write ($$$index$$$ % $$$k$$$)