№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Название |
---|
If I remember corretly, the mentioned problem from Run Twice contest appeared at Petrozavodsk summer camp 2022. My solution is to check whether the input graph has a $$$4$$$-clique: a random graph should not have it.
Nice! This solution feels a bit borderline to me: the graph has 1% of all edges when m=5000, so roughly speaking the probability of having a 4-clique is C(1000,4)*0.01^6 ~= 1000^4/24/100^6 = 1/24, so it might or might not appear in the ~100 testcases, not all of which have m=5000.